Optical and Quantum Electronics

, Volume 27, Issue 7, pp 643–661 | Cite as

Maximum repeaterless transmission of lightwave systems imposed by stimulated Brillouin scattering in fibres

  • T. Sugie
Paper

Abstract

To aid in designing high-speed optical networks, the fundamental limitations of lightwave transmission systems are investigated from the viewpoint of fibre nonlinearities, particularly of stimulated Brillouin scattering (SBS). When SBS occurs, the fibre launch power is usually restricted; thus, SBS is detrimental to lightwave systems. The effects of SBS on signals transmitted in fibres are clarified for several modulation schemes, especially coherent modulation schemes. A generalized model based on the maximum power spectrum density in the signals is proposed to estimate the degree of SBS generation. The maximum repeaterless transmissions for various bit rates, laser diode linewidths, and Brillouin gains of optical fibres are presented. The degradation of transmission due to SBS is clarified experimentally, focusing on the bit error rate, fibre input power, and spectra of signals transmitted in fibres. In addition, various techniques for suppressing the SBS effects are proposed. A repeaterless transmission experiment conducted over 364.3 km using optical booster amplifiers is presented to verify the effectiveness of the SBS suppression technique.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Hayashi, N. Ohkawa andD. Yanai,IEEE/OSA J. Lightwave Technol. 11(8) (1993) 1369.Google Scholar
  2. 2.
    Y. K. Park,Tech. Dig. Topical Meeting on Optical Amplification, Santa Fe, 1992, paper PD14.Google Scholar
  3. 3.
    K. T. Koai andR. Olshansky,IEEE Photon Technol. Lett. 4(4) (1993) 482.Google Scholar
  4. 4.
    K. Nakagawa, K. Hagimoto, S. Nishi and K. I. Aoyama,Top. Meet. on Optical Amplification, Snow Mass, 1991, paper PD11.Google Scholar
  5. 5.
    D. Cotter,J. Opt. Commun. 4 (1983) 10.Google Scholar
  6. 6.
    R. G. Smith,Appl. Opt. 11 (1972) 2489.Google Scholar
  7. 7.
    A. R. Chraplyvy,IEEE/OSA J. Lightwave Technol. 8 (1990) 1548.Google Scholar
  8. 8.
    Y. Aoki, K. Tajima andI. Mito,IEEE/OSA J. Lightwave Technol. 6 (1988) 710.Google Scholar
  9. 9.
    E. Lichtman, R. G. Waarts andA. A. Fiesen,IEEE/OSA J. Lightwave Technol. 7 (1989) 171.Google Scholar
  10. 10.
    N. Shibata, Y. Azuma, T. Horiguchi andM. Tateda,Opt. Lett. 13 (1988) 595.Google Scholar
  11. 11.
    T. Sugie,IEEE Photon Technol. Lett. 5(1) (1993) 102.Google Scholar
  12. 12.
    A. Hirose, Y. Takushima and T. Okoshi,16th European Conf. Optical Communication, 1990, MoF3, p. 85.Google Scholar
  13. 13.
    T. Sugie, N. Oohkawa, T. Imai and T. Ito,Top. Meet. on Optical Amplication, Monterey, 1990, paper PD2.15.Google Scholar
  14. 14.
    X. P. Mao, R. W. Tkach, A. R. Chraplyvy, R. M. Jopson andR. M. Derosier,IEEE Photon Technol. Lett. 4(1) (1992) 66.Google Scholar
  15. 15.
    T. Sugie,IEEE/OSA J. Lightwave Technol. 9(9) (1991) 1145.Google Scholar
  16. 16.
    W. R. Bennett andS. D. Rice,Bell Syst. Tech. J. (Sept. 1963) 2355.Google Scholar
  17. 17.
    Y. Tohmori, H. Mawatari, F. Kano, Y. Yoshikuni, N. Yamamoto, M. Yamamoto, T. Yamanaka andK. Yokoyama,19th European Conf. Optical Communication 1993, ThP11, p. 561.Google Scholar
  18. 18.
    G. P. Agrawal,Nonlinear Fiber Optics (Academic Press, New York, 1989).Google Scholar
  19. 19.
    M. Denariez andG. Bret,Phys. Rev. 171 (1968) 171.Google Scholar
  20. 20.
    A. Hadjifotiou andG. A. Hill,IEE Proc. Pt J 133(4) (1986) 256.Google Scholar
  21. 21.
    A. Belle, G. Grosso andB. Daino,Electron. Lett. 25 (1989) 2.Google Scholar
  22. 22.
    A. Cosentino andE. Iannone,Electron. Lett. 25 (1989) 1459.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • T. Sugie
    • 1
  1. 1.NTT Opto-electronics LaboratoriesAtsugi-shi, KanagawaJapan

Personalised recommendations