Advertisement

Geologische Rundschau

, Volume 82, Issue 1, pp 20–29 | Cite as

Investigation of the lithosphere beneath the Vogelsberg volcanic complex with P-wave travel time residuals

  • T. Braun
  • H. Berckhemer
Article

Abstract

With the aim of investigating the P-wave velocity structure below the Tertiary volcano Vogelsberg, a network of 10 mobile short period seismograph stations was installed in May 1987 for a period of 20 months. P-Wave travel time residuals relative to the station Kleiner Feldberg/Taunus (TNS) were determined for 168 seismic events using the Jeffreys - Bullen travel time tables. At all stations the relative residuals showed a positive sign, indicating a low velocity zone beneath the Vogelsberg. Maxima were found in the northern part of the Vogelsberg (station VAD +0.5 s) and in the region of the Amöneburger Basin (station RAU +0.28 s).

The travel time residuals were inverted using the tomographic inversion method of Aki et al. (1977). The slowness perturbations of the single blocks were calculated relative to a crustal and upper mantle model of the Rhenish Massif. The results show an intracrustal low velocity body (about −9%) striking in a Variscan direction and underlying the north-eastern part of the Vogelsberg, and another velocity minimum (about − 6%) in the region of the Am6neburger Basin. In the lower crust and the upper mantle the velocities are reduced by about 4% relative to the starting model.

The Variscan alignment of the low velocity zone under the Vogelsberg correlates with results of other geological studies. It can be assumed that during the rifting phase of the Upper Rhinegraben Variscan lineations have been reactivated, favouring uprising of magma along these old structures. The position and extension of the low velocity zone correlate with the assumed sediment distributions in the area of investigation. This may account for about one-half of the observed anomaly. The reason for the velocity reduction of about 4% in the entire underground region of the Vogelsberg down to a depth of about 70 km can be explained by the intensive fracturing of the lithosphere, caused by thermal and pressure gradients during the magma eruption process.

Key words

Travel time residuals Vogelsberg volcanic complex seismic tomography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achauer U, Greene L, Evans JR, Iyer HM (1986) Nature of the magma chamber underlying the mono craters area, eastern California, as determined from teleseismic travel time residuals. JGR, 91, No. B14: 13873–13891Google Scholar
  2. Aki K, Christofferson A, Husebye ES (1977) Determination of the three-dimensional seismic structure of the lithosphere. J Geophys Res 82: 277–296Google Scholar
  3. Babuska V, Plomerova J, Sileny J (1984a) Spatial variations of P-residuals and deep structure of the European lithosphere. Geophys J R Astron Soc 79: 363–383Google Scholar
  4. Babuska V, Plomerova J, Sileny J (1984b) Large-scale oriented structures in the subcrustal lithosphere of Central Europe. Ann Geophys 2: 649–662Google Scholar
  5. Braun T (1990) Untersuchung einer Anomalie im tieferen Untergrund des Vogelsberges mit Hilfe teleseismischer Laufzeitresiduen. Diplomarbeit, Univ. Frankfurt/Main, 125 ppGoogle Scholar
  6. Braunmühl W v (1975) Gravimetrische Untersuchungen im Vogelsberg. Notizbl. Hess. L.-Amt Bodenforsch. 103: 327–338Google Scholar
  7. Ehrenberg KH (1978) Exkursion A in den südlichen Vogelsberg am 30. 03. 78. Jahresber Mitteil Oberrh Geol Ver 60: 33–54Google Scholar
  8. Ehrenberg KH, Hickethier H (1985) Die Basaltbasis im Vogelsberg. Schollenbau und Hinweise zur Entwicklung der vulkanischen Abfolge. Geol Jb Hessen 113: 97–135Google Scholar
  9. Ellsworth WL, Koyanagi RY (1977) Three-dimensional crust and mantle structure of Kilauea Volcano, Hawaii, J Geophys Res 82: 5379–5394Google Scholar
  10. Ernst T, Kohler H, Schütz D, Schwab R (1970) The volcanism of the Vogelsberg in the north of the Rhinegraben Rift System. Graben Problems Int Upper Mantle Proj 27: 143–146Google Scholar
  11. Glahn A, Achauer U, Sachs P (1989) A teleseismic and petrological investigation of the crust and upper mantle beneath the geothermal anomalie Urach. Sonderdruck aus dem Berichtsband des SFB 108: Spannungsumwandlung in der Lithosphäre, Universität Karlsruhe, 493–536Google Scholar
  12. Hölting B, Stengel-Rutkowski W (1964) Beiträge zur Tektonik des nordwestlichen Vorlandes des basaltischen Vogelsberges, insbesondere des Amöneburger Beckens. Abh Hess L Amt Bodenforsch 47Google Scholar
  13. Iilies HJ (1974) Intraplattentektonik in Mitteleuropa und der Rheingraben. Oberrhein Geol Abh 23: 1–24Google Scholar
  14. Iyer HM, Stewart RM (1977) Teleseismic technique to locate magma in the crust and upper mantle. Magma Genesis, Proceedings of the American Geophysical Union Chapman Conference on Partial Melting in the Earth's Upper Mantle, Bill. Orog. Dep. Geol. Miner. Ind. 96: 281–299Google Scholar
  15. Jeffreys H, Bullen K (1970) Seismological Tables, British Association for the Advancement of Science, LondonGoogle Scholar
  16. Kutscher F (1954) Angewandte Erdmagnetische Messungen in Hessen. 2) Die erdmagnetischen Vermessungen der Basaltschlote von Naurod im Taunus/RSG. Jahrb Nassau Ver Naturk Bd 91: 36–50Google Scholar
  17. Lippolt HJ (1983) Distribution of volcanic activity in space and time. In: Fuchs K, v Gehlen K, Mälzer H, Murawski H, Semmel A, Eds. Plateau Uplift, Springer, Berlin Heidelberg New York pp. 352–363Google Scholar
  18. Martin J (1981) Daten and Notizen zur Untersuchung der Krustenstruktur im Vogelsberggebiet, Inst. f. Meteorologie u. Geophys. Univ. Frankfurt a. MGoogle Scholar
  19. Mooney WD, Prodehl C (1978) Crustal structure of the Rhenish Massif and adjacent areas: a reinterpretation of existing seismic refraction data J Geophys 44: 573–601Google Scholar
  20. Raikes SA (1980) Teleseismic evidence for velocity heterogeneity beneath the Rhenish Massif. J Geophys 48: 80–83Google Scholar
  21. Raikes SA, Bonjer KP (1983) Large scale mantle heterogeneity beneath the Rhenish Massif and its vicinity from teleseismic P-residuals measurements. In: Fuchs K, v Gehlen K, Mälzer H, Murawski H, Semmel A, (eds.) Plateau Uplift, Springer, Berlin Heidelberg New York pp. 352–363Google Scholar
  22. Schenk E (1974) Die Fortsetzung des Rheingrabens durch Hessen. Ein Beitrag zur tektonischen Analyse der Riftsysteme. In: Iilies H, Fuchs K, (eds.) Approaches to Taphrogenesis, Schweizerbart, Stuttgart, pp. 287–302Google Scholar
  23. Schmitt H (1988) Geologische and Geophysikalische Untersuchungen im Raum Oberwiddersheim (westlicher unterer Vogelsberg/Hessen, Blatt 5519 Hungen) Diplomarbeit, Univ. Frankfurt/Main.Google Scholar
  24. Sharp ADL, Davis PM, Gray F (1980) A low-velocity zone beneath Mount Etna and magma storage. Nature 287: 587–591Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • T. Braun
    • 1
  • H. Berckhemer
    • 1
  1. 1.Institut für Meteorologie and Geophysik der UniversitätFrankfurt/Main

Personalised recommendations