Advertisement

European Journal of Clinical Pharmacology

, Volume 5, Issue 2, pp 116–136 | Cite as

Induction of drug metabolizing enzyme system in the liver

  • H. Remmer
Review Article

Summary

1. Accelerated drug metabolism in liver cells was discovered during studies of the cause of barbiturate tolerance and of the way in which polycyclic hydrocarbons protect against the actions of several carcinogenic compounds. — 2. It is elicited by many lipid soluble drugs and is accompanied by increased synthesis of haem and enzyme proteins. It is due to increased activity of the drug metabolizing microsomal enzyme-complexes in the liver which consist of non specific mixed function oxidases and various transferases. — 3. Acceleration of drug metabolism is accompanied by hypertrophy of smooth intracellular membranes and enlargement of the liver. It is dependent on the concentration of the inducer in the endoplasmic reticulum and seems to be influenced by the stability of a complex formed between the drug and cytochrome P-450, as well as by certain, as yet unidentified properties possessed by certain types of inducing agents. — 4. In man it has been observed in patients during and after treatment with a few drugs which have a high inducing capacity and are prescribed in large doses. — 5. Accelerated drug metabolism might be highly advantageous and beneficial in protecting an organism against an overload of endogenous or exogenous toxic compounds, but it can also be harmful if it results in increased production of toxic metabolites. — 6. It can be regarded as a hitherto unknown pharmacological effect on the regulation of the synthesis-rate of enzymes involved in drug metabolism.

Key words

Drug metabolism enzyme induction tolerance unspecific microsomal hydroxylase cytochrome P-450 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Faust, E.S.: Über die Ursachen der Gewöhnung an Morphin. Arch. exp. Path. Pharmakol.44, 217 (1900).Google Scholar
  2. 2.
    Pringsheim, J.: Chemische Untersuchungen über das Wesen der Alkoholtoleranz. Biochem. Z.12, 143 (1908).Google Scholar
  3. 3.
    Eddy, N.B.: The effect of repeated administration of diethyl-barbituric acid and of cyclohexenyl-ethyl-barbituric-acid. J. Pharmacol. exp. Ther.37, 261 (1929).Google Scholar
  4. 4.
    Weese, H.: Evipan, ein neuartiges Einschlafmittel. I. Pharmakologie des Evipans. Dtsch. med. Wschr.1932 II, 1205.Google Scholar
  5. 5.
    Hubbard, Th.F., Goldbaum, L.R.: The mechanism of tolerance to thiopental in mice. J. Pharmacol. exp. Ther.97, 488 (1949).Google Scholar
  6. 6.
    Axelrod, J.: The enzymatic deamination of amphetamine (Benzedrine). J. biol. Chem.214, 753 (1955).Google Scholar
  7. 7.
    La Du, B.N. Gaudette, L., Trousof, N., Brodie, B.B.: Enzymatic dealkylation of aminopyrin and other alkylamines. J. biol. Chem.214, 741 (1955).Google Scholar
  8. 8.
    Quinn, G.P., Axelrod, J., Brodie, B.B.: Species and sex differences in metabolism and duration of action of hexobarbital (Evipan). Fed. Proc.13, 396 (1954).Google Scholar
  9. 9.
    Robillard, E., D'Iorio, A., Pellerin, J.: Influences endocriniennes sur la désintoxication hépatique du pentobarbital. Un. méd. Can.83, 853 (1954).Google Scholar
  10. 10.
    Pellerin, J., D'Iorio, A., Robillard, E.: Influence des hormones sexuelles et l'hépatectomie partielle sur l'anesthésie au pentobarbital. Rev. Canad. Biol.13, 257 (1954).Google Scholar
  11. 11.
    Holck, H.G.O., Kanân, M.A., Mills, L.M., Smith, E.L.: Studies upon the sex-differences in rats in tolerance to certain barbiturates and to nicotine. J. Pharmacol. exp. Ther.60, 1 (1937).Google Scholar
  12. 12.
    Winton, F.R.: The rat-poisoning substance in red squills. J. Pharmacol. exp. Ther.31, 123 (1927).Google Scholar
  13. 13.
    Poe, C.F., Suchy, J.F., Witt, N.F.: Toxicity of strychnine for male and female rats of different ages. J. Pharmacol. exp. Ther.58, 239 (1936).Google Scholar
  14. 14.
    Buchel, L.: Influence des hormones sexuelles sur l'activité de l'hexobarbital chez le rat. Durée du séjour de cet hypnotique dans l'organisme du rat. Anesth. et Analg.11, 268 (1954).Google Scholar
  15. 15.
    Eichholtz, F., Hotovy, R., Collischonn, P., Knauer, H.: Beeinflussung der Entgiftungszeiten von Avertin und Pentothal-Natrium an der nebennierenlosen Ratte durch Nebennieren-Rindenhormon (Pentothal-Natrium). Arch. exp. Path. Pharmakol.207, 576 (1949).Google Scholar
  16. 16.
    Remmer, H.: Die Wirkung der Nebennierenrinde auf den Abbau von Pharmaka in den Lebermikrosomen. Naturwiss.45, 522 (1958).Google Scholar
  17. 17.
    Remmer, H.: Die Verstärkung der Abbaugeschwindigkeit von Evipan durch Glykocorticoide. Naunyn-Schmiedebergs Arch. Pharmacol.233, 184 (1958).Google Scholar
  18. 18.
    Remmer, H., Alsleben, B.: Die Aktivierung der Entgiftung in den Lebermikrosomen während der Gewöhnung. Klin. Wschr.36, 332 (1958).Google Scholar
  19. 19.
    Brodie, B., Burns, J.J., Mark, L.C., Lief, Ph.A., Bernstein, E., Papper, E.M.: The fate of pentobarbital in man and dog and a method for its estimation in biological material. J. Pharmacol. exp. Ther.109, 26 (1953).Google Scholar
  20. 20.
    Alsleben, B.: Der Abbau von Pethidin und anderen Arzneimitteln durch mikrosomale Leberenzyme bei normalen und gewöhnten Ratten. Dissertation, Med. Fak. Freie Universität, Berlin, 1963.Google Scholar
  21. 21.
    Remmer, H.: Hemmung und Steigerung mikrosomaler Oxydationen durch körpereigene und körperfremde Stoffe. Symp. über Redoxfunktionen cytoplasmatischer Strukturen; Dtsch. Gesellsch. f. Physiol. Chemie u. Österr. Biochem. Gesellsch., Wien, Sept. 1962 (S. 75).Google Scholar
  22. 22.
    Remmer, H.: Der beschleunigte Abbau von Pharmaka unter dem Einfluß von Luminal. Arch. exp. Path. Pharmakol.235, 279 (1959).Google Scholar
  23. 23.
    Remmer, H.: Die Beschleunigung des Evipanabbaus unter der Wirkung von Barbituraten. Naturwiss.1958, 189.Google Scholar
  24. 24.
    Remmer, H., Siegert, M., Krause, K.: Die Aktivierung des Arzneimittelabbaus durch Pharmaka. Arch. exp. Path. Pharmakol.241, 549 (1961).Google Scholar
  25. 25.
    Remmer, H.: Drug tolerance. CIBA Foundation Symp. on Enzymes and Drug Action, p. 276. London: 1962.Google Scholar
  26. 26.
    Remmer, H.: Drugs as activators of drug enzymes. Proceed. I. Intern. Pharmacol. Meeting, 1962,VI, 235.Google Scholar
  27. 27.
    Conney, A.H., Davison, C., Gastel, R., Burns, J.J.: Adaptive increases in drug metabolizing enzymes induced by phenobarbital and other drugs. J. Pharmacol. exp. Ther.130, 1 (1960).Google Scholar
  28. 28.
    Conney, A.H., Miller, E.C., Miller, J.A.: The metabolism of methylated aminoazo dyes. V. Evidence for induction of enzyme synthesis in the rat by 3-methylcholanthrene. Cancer Res.16, 450 (1956).Google Scholar
  29. 29.
    Conney, A.H., Brown, R.R., Miller, J.A., Miller, E.C.: The metabolism of methylated amino azo dyes. VI. Intracellular distribution and properties of the demethylated system. Cancer Res.17, 628 (1957).Google Scholar
  30. 30.
    Miller, E.C., Miller, J.A., Brown, R.R.: On the inhibitory action of certain polycyclic hydrocarbons on azo dye carcinogenesis. Cancer Res.12, 282 (1952).Google Scholar
  31. 31.
    Richardson, H.L., Stier, A.R., Borsos-Nachtnebel, E.: Liver tumor inhibition and adrenal histologic responses in rats to which 3′-methyl-4-dimethylamino azobenzene and 20-methylcholanthrene were simultaneously administered. Cancer Res.12, 356 (1952).Google Scholar
  32. 32.
    Estabrook, R.W., Cooper, D.Y., Rosenthal, O.: The light reversible monoxide inhibition of the steroid C21-hydroxylase system of the adrenal cortex. Biochem. Z.338, 741 (1963).Google Scholar
  33. 33.
    Omura, T., Sato, R., Cooper, D.Y., Rosenthal, O., Estabrook, R.W.: Function of cytochrome P-450 of microsomes. Fed. Proc.24, 1181 (1965).Google Scholar
  34. 34.
    Gillette, J.R.: Metabolism of drugs and other foreign compounds by enzymatic mechanisms. Progr. Drug Res.6, 11 (1963).Google Scholar
  35. 35.
    Remmer, H.: The fate of drugs in the organism. Ann. Rev. Pharmacol.5, 405 (1965).Google Scholar
  36. 36.
    Smith, R.L., Williams, R.T.: Implications of the conjugation of drugs and other exogenous compounds. In: Glucuronic Acid, chap. 7, p. 457 (ed. G.J. Dutton), Academic Press, 1966.Google Scholar
  37. 37.
    Dutton, G.J.: The biosynthesis of glucuronides. In: Glucuronic Acid, chap. 3, p. 185 (ed. G.J. Dutton), Academic Press, 1966.Google Scholar
  38. 38.
    Gillette, J.R.: Biochemistry of drug oxidation and reduction by enzymes in hepatic endoplasmic reticulum. In: Advances in Pharmacology, p. 219 (ed. S. Garattini and P.A. Shore), Academic Press, 1966.Google Scholar
  39. 39.
    Estabrook, R.W., Hildebrandt, A., Remmer, H., Schenkman, J.B., Rosenthal, O., Cooper, D.Y.: The role of cytochrome P-450 in microsomal mixed function oxidation reactions. In: Biochemie des Sauerstoffs, chap. 5 (ed. B. Hess and Hj. Staudinger), p. 142, Springer-Verlag, 1968.Google Scholar
  40. 40.
    Mannering, G.J.: Microsomal enzyme systems which catalyze drug metabolism. In: Fundamentals of Drug Metabolism and Disposition, (ed. La Duet al.), Williams and Wilkins (in press).Google Scholar
  41. 41.
    Remmer, H., Schenkman, J., Estabrook, R.W., Sasame, H., Gillette, J., Narasimhulu, S., Cooper, D.Y., Rosenthal, O.: Drug interactions with hepatic microsomal cytochrome. Molec. Pharmacol.2, 187 (1966).Google Scholar
  42. 42.
    Schenkman, J.B., Remmer, H., Estabrook, R.W.: Spectral studies of drug interaction with hepatic microsomal cytochrome. Molec. Pharmacol.3, 113 (1967).Google Scholar
  43. 43.
    Kinoshita, T., Horie, S.: Studies on P-450. III. On the absorption spectrum of P-450 in rabbit liver microsomes. J. Biochem. (Tokyo)61, 26 (1967).Google Scholar
  44. 44.
    Remmer, H., Estabrook, R.W., Schenkman, J., Greim, H.: Reaction of drugs with microsomal liver hydroxylase: its influence on drug action. Arch. Pharmacol. exp. Path.259, 98 (1968).Google Scholar
  45. 45.
    Gillette, J.R., Conney, A.H., Cosmides, G.J., Estabrook, R.W., Fouts, J.R., Mannering, G.J.: Microsomes and drug oxidations. Symp. on Microsomes and Drug Oxidations, Bethesda, 1968, p. 547. Academic Press Inc.: 1969.Google Scholar
  46. 46.
    Gigon, P.L., Gram, T.E., Gillette, J.R.: Studies on the rate of reduction of hepatic microsomal cytochrome P-450 by reduced nicotinamide adenine dinucleotide phosphate. Molec. Pharmacol.5, 109 (1969).Google Scholar
  47. 47.
    Remmer, H., Merker, H.J.: Effect of drugs on the formation of smooth endoplasmic reticulum and drug-metabolizing enzymes. Ann. N. Y. Acad. Sci.123, 79 (1965).Google Scholar
  48. 48.
    Ernster, L., Orrenius, S.: Substrate induced synthesis of the hydroxylating enzyme system of liver microsomes. Fed. Proc.24, 1190 (1965).Google Scholar
  49. 49.
    Greim, H., Remmer, H.: Die Wirkung von DDT und Phenobarbital auf mikrosomale hydroxylierende Cytochrome. Arch. Pharmakol. exp. Path.255, 1, 16 (1966).Google Scholar
  50. 50.
    Remmer, H.: Enzyme induction phenomenon: Effects in vertebrate livers. Proc. 2nd IUPAC Internat. Congr. of Pesticide Chemistry, Tel Aviv, Febr. 1971.Google Scholar
  51. 51.
    Stramentinoli, G., Remmer, H.: Unpublished.Google Scholar
  52. 52.
    Remmer, H.: Drug induced changes in the liver endoplasmic reticulum: Association with drug metabolizing enzymes. Science142, 1657 (1963).Google Scholar
  53. 53.
    Fouts, J.R.: Physiological impairment of drug metabolism. Proc. I. Intern. Pharmacol. Meeting, Aug. 1961, Stockholm, Vol.6, p. 257 (1962).Google Scholar
  54. 54.
    Remmer, H.: Induction of drug metabolizing enzymes in different animal species. Proc. Europ. Soc. Study Drug Toxic., Vol. XI, Venice, 1969. Excerpta Med. Intern. Congr. Ser. No. 198 (p. 14).Google Scholar
  55. 55.
    Shuster, L., Jick, H.: The turnover of microsomal protein in the livers of phenobarbital-treated mice. J. Biol. Chem.241, 22, 5361 (1966).Google Scholar
  56. 56.
    Omura, T., Siekevitz, P., Palade, G.E.: Turnover of constituents of the endoplasmic reticulum membranes of rat hepatocytes. J. biol. Chem.242, 10, 2389 (1967).Google Scholar
  57. 57.
    Greim, H., Remmer, H.: Stabilisation of heme during the elevation of microsomal cytochromes P-450 and b-5 by phenobarbital in starved rats. Scand. J. clin. Lab. Invest.25, 113 (1970).Google Scholar
  58. 58.
    Arias, I.M., Doyle, D., Schimke, R.T.: Studies on the synthesis and degradation of proteins of the endoplasmic reticulum of rat liver. J. biol. Chem.244, 12, 3303 (1969.)Google Scholar
  59. 59.
    Greim, H., Schenkman, J.B., Klotzbücher, M., Remmer, H.: The influence of phenobarbital on the turnover of hepatic microsomal cytochrome b-5 and cytochrome P-450 hemes in the rat. Biochim. biophys. Acta201, 20 (1970).Google Scholar
  60. 60.
    Kuriyama, Y., Omura, T.: Effects of phenobarbital on the synthesis and degradation of the protein components of rat liver microsomal membranes. J. biol. Chem.244, 8, 2017 (1969).Google Scholar
  61. 61.
    Kato, R., Jondorf, W.R., Loeb, L.A., Ben, T., Gelboin, H.V.: Studies on the mechanism of drug induced microsomal enzyme activities. V. Phenobarbital stimulation of endogenous messenger RNA and polyuridylic acid-directed L-(14C)-phenylalanine incorporation. Molec. Pharmacol.2, 171 (1966).Google Scholar
  62. 62.
    Marver, H.S.: The role of heme in the synthesis and repression of microsomal protein. In: Microsomes and Drug Oxidations (J. Gillette, A.H., Conney, G.J., Cosmides, R.W. Estabrook, J.R. Fouts, and G.J. Mannering, eds.), New York, Academic Press, 1969, p. 495.Google Scholar
  63. 63.
    Bock, K.W., Krauss, E., Fröhling, W.: Regulation of δ-aminolevulinic acid synthetase by drugs and steroids in vivo and in isolated perfused rat liver. Europ. J. Biochem.23, 366 (1971).Google Scholar
  64. 64.
    Schimke, R.T.: J. biol. Chem. (in press).Google Scholar
  65. 65.
    Gelobin, H.V., Younger, L.R., Nebert, D.W., Miller, J.M.: In vivo and in vitro studies on the mechanism of microsomal enzyme induction. In: Proc. 4th Intern. Congr. Pharmacol., July, 1969, Basel, p. 287.Google Scholar
  66. 66.
    Bresnick, E.: Ribonucleic acid polymerase activity in liver nuclei from rats pretreated with 3-methylcholanthrene. Molec. Pharmacol.2, 406 (1966).Google Scholar
  67. 67.
    Kunz, W., Schnieders, B.: RNA metabolism and induction of extramicrosomal enzymes during liver enlargement due to drugs. In: Proc. 4th Intern. Congr. Pharmacol., p. 326. July 1969, Basel.Google Scholar
  68. 68.
    Lechner, M.C., Pousada, C.R.: A possible role of liver microsomal alkaline ribonuclease in the stimulation of oxidative drug metabolism by phenobarbital, chlordane and DDT. Biochem. Pharmacol. (in press).Google Scholar
  69. 69.
    Louis-Ferdinand, R.T., Fuller, G.C.: Supression of hepatic ribonuclease during phenobarbital stimulation of drug metabolism. Biochem. biophys. Res. Comm.38, 811 (1970).Google Scholar
  70. 70.
    Seifert, J., Remmer, H.: Suppression of synthesis of RNA present in microsomal membranes after administration of phenobarbital. Biochem. Pharmacol.20, 553 (1971).Google Scholar
  71. 71.
    Remmer, H., Merker, H.-J.: Enzyminduktion und Vermehrung von endoplasmatischem Retikulum in der Leberzelle während der Behandlung mit Phenobarbital (Luminal). Klin. Wschr.41, 276 (1963).Google Scholar
  72. 72.
    Fouts, J.R., Rogers, L.A.: Morphological changes in the liver accompanying stimulation of microsomal drug metabolizing enzyme activity by phenobarbital, chlordane, benzpyrene or methylcholanthrene in rats. J. Pharmacol. exp. Ther.147, 112 (1965).Google Scholar
  73. 73.
    Orrenius, S., Ericsson, J.L.E., Ernster, L.: Phenobarbital-induced synthesis of the microsomal drug-metabolizing enzyme system and its relationship to the proliferation of endoplasmic membranes. J. Cell Biol.25, 627 (1965).Google Scholar
  74. 74.
    Ortega, P.: Light and electron microscopy of dichloro-diphenyltrichloroethane (DDT) poisoning in the rat liver. Lab. Invest.15, 657 (1966).Google Scholar
  75. 75.
    Kunz, W., Schaude, G., Schmid, W., Siess, M.: Lebervergrößerung durch Fremdstoffe. Arch. Pharmakol. exp. Path.254, 470 (1966).Google Scholar
  76. 76.
    Koransky, W., Schulte-Hermann, R.: Induction of cell proliferation in the liver by drugs. In: Proc. 4th Intern. Congr. Pharmacol. p. 277, July 1969, Basel.Google Scholar
  77. 77.
    Remmer, H.: Induction of microsomal hydroxylase. Involvement of a second factor besides cytochrome P-450, H.-S. Zeitschrift für physiologische Chemie349, 1621 (1968).Google Scholar
  78. 78.
    Hildebrandt, A., Remmer, H., Estabrook, R.W.: Cytochrome P-450 of liver microsomes — one pigment or many. Biochem. biophys. Res. Comm.30, 6, 607 (1968).Google Scholar
  79. 79.
    Selye, H.: Pharmaco-chemical interrelations among catatoxic steroids. Rev. canad. Biol.29, 49 (1970).Google Scholar
  80. 80.
    Selye, H.: Hormones and resistance. J. Pharm. Sci.60, 1 (1971).Google Scholar
  81. 81.
    Selye, H.: Hormones and resistance. Springer-Verlag, Berlin, 1971.Google Scholar
  82. 82.
    Solymoss, B., Werringloer, J., Tóth, S.: The influence of pregnenolone-16α-carbonitrile on hepatic mixed-function oxygenases. Steroids17, 427 (1971).Google Scholar
  83. 83.
    Werringloer, J.: Stimulation of hepatic microsomal drug metabolism by pregnenolone-16α-carbonitrile and phenobarbital. Fed. Proc. 1972 (in press).Google Scholar
  84. 84.
    Garg, B.D., Kovács, K., Blascheck, J.A., Selye, H.: Ultrastructural changes induced by pregnenolone nitrile in the rat liver. J. Pharm. Pharmacol.22, 872 (1970).Google Scholar
  85. 85.
    Garg, B.D., Szabo, S., Khandekar, J.D., Kovács, K.: Effect of hypophysectomy on pregnenolone-16α-carbonitrile-induced ultrastructural changes in rat liver. Naunyn-Schmiedebergs Arch. Pharmakol.269, 7 (1971).Google Scholar
  86. 86.
    Schenkman, J.B., Frey, I., Remmer, H., Estabrook, R.W.: Sex differences in drug metabolism by rat liver microsomes. Molec. Pharmacol.3, 516 (1967).Google Scholar
  87. 87.
    Davies, D.S., Gigon, P.L., Gillette, J.R.: Species and sex differences in electron transport systems in liver microsomes and their relationship to ethylmorphine demethylation. Life Sci.8, II, 85 (1969).Google Scholar
  88. 88.
    Siegert, M., Remmer, H.: Kumulation und Elimination von Phenobarbital. Arch. exp. Path. Pharmakol.243, 479 (1962).Google Scholar
  89. 89.
    Conney, A.H.: Enzyme induction by drugs in humans. J. Mond. Pharm.12, 3, 186 (1969).Google Scholar
  90. 90.
    Cucinell, S.A., Conney, A.H., Sansur, M., Burns, J.J.: Drug interactions in man. I. Lowering effect of phenobarbital on plasma levels of bishydroxycoumarin (Dicumarol) and diphenylhydantoin (Dilantin). Clin. Pharmacol. Ther.6, 420 (1965).Google Scholar
  91. 91.
    Yaffe, S.J., Levy, G., Matsuzawa, T., Baliah, T.: Enhancement of glucuronide-conjugation capacity in a hyperbilirubinaemic infant due to apparent enzyme induction by phenobarbital. New Engl. J. Med.275, 1461 (1966).Google Scholar
  92. 92.
    Crigler, J.F., Gold, N.I.: Sodium phenobarbital induced decrease in serum bilirubin in an infant with congenital non-haemolytic jaundice and pruritus. J. Clin. Invest.45, 998 (1966).Google Scholar
  93. 93.
    Schmid, K., Cornu, F., Imhof, P., Keberle, H.: Die biochemische Deutung der Gewöhnung an Schlafmittel. Schweiz. med. Wschr.94, 235 (1964).Google Scholar
  94. 94.
    Douglas, J.F., Ludwig, B.J., Smith, N.: Studies on the metabolism of meprobamate. Proc. Soc. exp. Biol. Med.112, 436 (1963).Google Scholar
  95. 95.
    Chen, W., Vrindten, P.A., Dayton, P.G., Burns, J.J.: Accelerated aminopyrine metabolism in human subjects pretreated with phenylbutazone. Life Sci.1, 35 (1962).Google Scholar
  96. 96.
    Arnold, K., Gerber, N.: The rate of decline of diphenyl-hydantoin in human plasma. Clin. Pharmacol. Ther.11, 121 (1970).Google Scholar
  97. 97.
    Schoene, B., Fleischmann, R., von Oldershausen, H.-F., Remmer, H.: Unpublished.Google Scholar
  98. 98.
    Bledsoe, T., Island, D.P., Ney, R.L., Liddle, G.W.: An effect of o,p'-DDD on the extra-adrenal metabolism of cortisol in man. J. clin. Endocr.24, 1303 (1964).Google Scholar
  99. 99.
    Hartmann, N.: Teleologisches Denken. p. 81–82. Berlin, 1951.Google Scholar
  100. 100.
    Remmer, H.: The influence of anaesthetics on drug metabolizing enzymes. Rapport de XXI Congrès d'Anesthésie-Reanimation, Marseille, 1971.Google Scholar
  101. 101.
    Remmer, H., Schmidt-Volkmar, W.: Unpublished.Google Scholar
  102. 102.
    Krause, W.: Die Steigerung der Aktivität oxydierender Enzyme in den Lebermikrosomen durch Arzneimittel. Inaug.-Diss., Freie Universität Berlin, 1962.Google Scholar
  103. 103.
    Kato, R., Vasanelli, P.: Induction of increased meprobamate metabolism in rats pretreated with some neurotropic drugs. Biochem. Pharmacol.11, 779 (1962).Google Scholar
  104. 104.
    Fujimoto, M.M., Plaa, F.L.: Effect of ethionine and carbon tetrachloride on urethan and phenobarbital induced changes in hexobarbital action. J. Pharmacol. exp. Ther.131, 282 (1961).Google Scholar
  105. 105.
    Remmer, H.: Der beschleunigte Abbau von Pharmaka in den Lebermikrosomen unter dem Einfluß von Luminal. Arch. exp. Path. Pharmackol.235, 279 (1959).Google Scholar
  106. 106.
    Remmer, H.: Die Beschleunigung von enzymatischen Oxydationen in den Lebermikrosomen unter dem Einfluß von Barbituraten. Arch. exp. Path. Pharmakol.236, 7 (1959).Google Scholar
  107. 107.
    Kato, R., Chiesara, E., Vasanelli, P.: Increased activity of microsomal strychnine-metabolizing enzyme induced by phenobarbital and other drugs. Biochem. Pharmacol.11, 913 (1962).Google Scholar
  108. 108.
    Kato, R.: Induced increase of meprobamate metabolism in rats treated with phenobarbital or phenaglycodol. Med. exp. (Basel),3, 95 (1960).Google Scholar
  109. 109.
    Remmer, H.: Unpublished.Google Scholar
  110. 110.
    Kato, R.: Un pretrattamento, eseguito 48 ore prima, con svyriate sostanze può diminuire gli effeti farmacologici del nembutal. Atti della Società Lombarda die Scienze Medico-BiologicheXIV, 778 (1959).Google Scholar
  111. 111.
    Remmer, H., Schüppel, R.: The influence of ethanol on drug metabolism. In: Alcohol and Alcoholism, p. 73 (ed. R.E. Popham), Univ. of Toronto Press, 1969.Google Scholar
  112. 112.
    Rubin, E., Hutterer, F., Lieber, C.S.: Ethanol increases hepatic smooth endoplasmic reticulum and drug-metabolizing enzymes. Sci.159, 1469 (1968).Google Scholar
  113. 113.
    Rubin, E., Bacchin, P., Gang, H., Lieber, C.S.: Induction and inhibition of hepatic microsomal and mitochondrial enzymes by ethanol. Lab. Invest.22, 569 (1970).Google Scholar
  114. 114.
    Ariyoshi, T., Takabatake, E., Remmer, H.: Drug metabolism in ethanol induced fatty liver. Life Sci.9, 361 (1970).Google Scholar
  115. 115.
    Cucinell, S.A., Odessky, L., Weiss, M., Dayton, P.G.: The effect of chloral hydrate on bishydroxycoumarin metabolism. J. Amer. med. Ass.197, 366 (1967).Google Scholar
  116. 116.
    Kuntzman, R., Jacobson, M., Levin, W., Conney, A.H.: Stimulatory effect of N-phenylbarbital (phetharbital) on cortisol hydroxylation in man. Biochem. Pharmacol.17, 565 (1968).Google Scholar
  117. 117.
    Conney, A.H., Jacobson, M., Schneidman, K., Kuntzman, R.: Induction of liver microsomal cortisol 6β-hydroxylase by diphenylhydantoin or phenobarbital: An explanation for the increased excretion of 6-hydroxycortisol in humans treated with these drugs. Life Sci.4, 1091 (1965).Google Scholar
  118. 118.
    Kato, R., Chiesara, E.: Increase of pentobarbitone metabolism induced in rats pretreated with some centrally acting compounds. Brit. J. Pharmacol.18, 29 (1962).Google Scholar
  119. 119.
    Phillips, B.M., Miya, T.A., Yim, G.K.W.: Studies on the mechanism of meprobamate tolerance in the rat. J. Pharmacol. exp. Ther.135, 223 (1962).Google Scholar
  120. 120.
    Hoogland, D.R., Miya, T.S., Bousquet, W.F.: Metabolism and tolerance studies with chlordiazepoxide-2-14C in the rat. Toxicol. Appl. Pharmacol.9, 116 (1966).Google Scholar
  121. 121.
    Heubel, F.: Interferenz von Diazepam und Pentobarbital an der Ratte und am Menschen. Arch. exp. Path. Pharmacol.264, 246 (1969).Google Scholar
  122. 122.
    Wattenberg, L.W., Leong, J.L.: Effects of phenothiazines on protective systems against polycyclic hydrocarbons. Cancer Res.25, 365 (1965).Google Scholar
  123. 123.
    Breyer, U.: Perazine, chlorpromazine and imipramine as inducers of microsomal drug metabolism. Naunyn-Schmiedebergs Arch. Pharmakol. exp. Path.272, 277 (1972).Google Scholar
  124. 124.
    Stock, K., Westermann, E.: Untersuchungen über den Mechanismus der narkoseverkürzenden Wirkung von Monoaminoxydase-Hemmstoffen. Arch. exp. Path. Pharmakol.243, 44 (1962).Google Scholar
  125. 125.
    Dingell, J.V., Gillette, J.R.: Unpublished.Google Scholar
  126. 126.
    Brazda, F.G., Baucum, R.: The effect of nikethamide on the metabolism of pentobarbital by liver microsomes of the rat. J. Pharmacol. exp. Ther.132, 295 (1961).Google Scholar
  127. 127.
    Burns, J.J., Conney, A.H., Koster, R.: Stimulatory effect of chronic drug administration on drug-metabolizing enzymes in liver microsomes. Ann. N. Y. Acad. Sci.104, 881 (1963)Google Scholar
  128. 128.
    Burns, J.J., Cucinell, S.A., Koster, R., Conney, A.H.: Application of drug metabolism to drug toxicity studies. Ann. N. Y. Acad. Sci.123, 273 (1965).Google Scholar
  129. 129.
    Conney, A.H., Michaelson, I.A., Burns, J.J.: Stimulatory effect of chlorcyclizine on barbiturate metabolism. J. Pharmacol. exp. Ther.132, 202 (1961).Google Scholar
  130. 130.
    Remmer, H., Siegert, M., Merker, H.-J.: Vermehrung arzneimittelabbauender Enzyme durch Tolbutamid. Arch. exp. Path. Pharmakol.249, 71 (1964).Google Scholar
  131. 131.
    Dixon, R.L., Fouts, J.R.: Inhibition of microsomal drug metabolic pathways by chloramphenicol. Biochem. Pharmacol.11, 715 (1962).Google Scholar
  132. 132.
    Cullen, S.I., Catalano, P.M.: Griseofulvin-warfarin antagonism. J. Amer. med. Ass.199, 150 (1967).Google Scholar
  133. 133.
    Novick, W.J., Stohler, C.M., Swagzdis, J.: The influence of steroids on drug metabolism in the mouse. J. Pharmacol. exp. Ther.151, 139 (1966).Google Scholar
  134. 134.
    Booth, J., Gillette, J.R.: The effect of anabolic steroids on drug metabolism by microsomal enzymes in rat liver. J. Pharmacol. exp. Ther.137, 374 (1962).Google Scholar
  135. 135.
    Juchau, M.R., Fouts, J.R.: Effects of norethynodrel and progesterone on hepatic microsomal drug metabolizing enzyme systems. Biochem. Pharmacol.15, 891 (1966).Google Scholar
  136. 136.
    Stripp, B., Hamrick, M., Zampaglione, N.: Effect of spironolactone treatment of rats on the oxidation of drugs by liver microsomes. Fed. Proc.29, 346, 571 (1970).Google Scholar
  137. 137.
    Solymoss, B., Classen, H.G., Varga, S.: Increased hepatic microsomal activity induced by spironolactone and other steroids. Proc. Soc. exp. Biol. Med.132, 940 (1969).Google Scholar
  138. 138.
    Blackham, A., Spencer, P.S.J.: The effect of estrogens and progestins on the response of mice to barbiturates. Brit. J. Pharmacol.37, 129 (1969).Google Scholar
  139. 139.
    Rümke, C.L., Noordhoek, J.: The influence of lynestrenol on the rate of metabolism of phenobarbital, phenytoin and hexobarbital in mice. Europ. J. Pharmacol.6, 163 (1969).Google Scholar
  140. 140.
    Cook, L., Toner, J.J., Fellows, E.J.: The effect of β-diethyl-aminoethyldiphenylpropylacetate hydrochloride (SKF No. 525-A) on hexobarbital. J. Pharmacol. exp. Ther.111, 131 (1954).Google Scholar
  141. 141.
    Kaneko, A., Sakamoto, S., Morita, M., Onoe, T.: Morphological and biochemical changes in rat liver in early stages of ethyl chlorophenoxyisobutyrate administration. Tohoku J. exp. Med.99, 81 (1969).Google Scholar
  142. 142.
    Hartman, H.A., Tousimis, A.J.: Rat hepatocyte peroxisomes: Ultrastructural alterations following cessation of chronic dietary clofibrate administration. Experientia25, 1248 (1969).Google Scholar
  143. 143.
    Welch, R.M., Haber, S., Gommi, B.W., Atkins, C., Salvador, R.A.: Effect of clofibrate and 1-methyl-4-piperidyl, bis(p-chlorophenoxy)acetate (Sandoz 42-348) on the metabolism of steroids and drugs by rat liver. Fed. Proc., Fed. Amer. Soc. Exp. Biol.29, 683 (1970).Google Scholar
  144. 144.
    Ruddon, R.W., Cohen, A.M.: Alteration of enzyme activity in rat liver following the acute and chronic administration of nicotine. Toxicol. Appl. Pharmacol.16, 613 (1970).Google Scholar
  145. 145.
    Wenzel, D.G., Broadie, L.L.: Stimulatory effect of nicotine on the metabolism of meprobamate. Toxicol. Appl. Pharmacol.8, 455 (1966).Google Scholar
  146. 146.
    Yamamoto, I., Nagai, K., Kimura, H., Iwatsubo, K.: Nicotine and some carcinogens in special reference to the hepatic drug-metabolizing enzymes. Jap. J. Pharmacol.16, 183 (1966).Google Scholar
  147. 147.
    Beckett, A.H., Triggs, E.J.: Enzyme induction in man caused by smoking. Nature216, 587 (1967).Google Scholar
  148. 148.
    Kocsis, J.J., Harkaway, S., Santoyo, M.C., Snyder, R.: Dimethyl sulfoxide: Interactions with aromatic hydrocarbons. Science160, 427 (1968).Google Scholar
  149. 149.
    Kupfer, D., Balazs, T., Buyske, D.A.: Stimulation of o,p′-DDD of cortisol metabolism in the guinea pig. Life Sci.3, 959 (1964).Google Scholar
  150. 150.
    Hart, L.G., Shultice, R.W., Fouts, J.R.: Stimulatory effects of chlordane on hepatic microsomal drug metabolism in the rat. Toxicol. Appl. Pharmacol.5, 371 (1963).Google Scholar
  151. 151.
    Hartl, L.G., Fouts, J.R.: Effects of acute and chronic DDT-administration on hepatic microsomal drug metabolism in the rat. Proc. Soc. exp. Biol. Med.114, 388 (1963).Google Scholar
  152. 152.
    Ghazal, A., Koransky, W., Portig, J., Vohland, H.W., Klempau, I.: Beschleunigung von Entgiftungsfunktionen durch verschiedene Insektizide. Arch. exp. Path. Pharmakol.249, 1 (1964).Google Scholar
  153. 153.
    Koransky, W., Portig, J., Vohland, H.W., Klempau, I.: Aktivierung von Mikrosomenenzymen durch Hexachlorcyclohexan-Isomere. Arch. exp. Path. Pharmakol.247, 61 (1964).Google Scholar
  154. 154.
    Kinoshita, F.K., Frawley, J.P., Du Bois, K.: Quantitative measurement of induction of hepatic microsomal enzymes by various dietary levels of DDT and toxaphene in rats. Toxicol. Appl. Pharmacol.9, 505 (1966).Google Scholar
  155. 155.
    Conney, A.H., Miller, E.C., Miller, J.A.: Substrate-induced synthesis and other properties of benzpyrene hydroxylase in rat liver. J. biol. Chem.228, 753 (1957).Google Scholar
  156. 156.
    Acros, J.C., Conney, A.H., Buu-Hoi, Ng.Ph.: Induction of microsomal enzyme synthesis by polycyclic aromatic hydrocarbons of different molecular sizes. J. biol. Chem.236, 1291 (1961).Google Scholar
  157. 157.
    Cramer, J.W., Miller, J.A., Miller, E.C.: The hydroxylation of the carcinogen 2-acetylaminofluorene by rat liver: Stimulation by pretreatment in vivo with 3-methylcholanthrene. J. biol. Chem.235, 250 (1960).Google Scholar
  158. 158.
    Gelboin, H.V., Blackburn, N.R.: The stimulatory effect of 3-methylcholanthrene on benzpyrene hydroxylase activity in several rat tissues. Inhibition by actinomycin D and puromycin. Cancer Res.24, 356 (1964).Google Scholar
  159. 159.
    Mannering, G.J.: Significance of stimulation and inhibition of drug metabolism in pharmacologic testing. In: Selected Pharmacol. Testing Methods (ed. A. Burger), p. 51. New York: Dekker 1968.Google Scholar
  160. 160.
    Hernandez, P.H., Mazel, P., Gillette, J.R.: Studies on the mechanism of action of mammalian hepatic azo reductase. II. The effects of phenobarbital and 3-methylcholanthrene on carbon monoxide sensitive and insensitive azo-reductase activities. Biochem. Pharmacol.16, 1877 (1967).Google Scholar
  161. 161.
    Remmer, H., Schenkman, J.B.: Unpublished.Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • H. Remmer
    • 1
  1. 1.Toxikologisches Institut der Universität TübingenGermany (F.R.G.)

Personalised recommendations