Russian Physics Journal

, Volume 38, Issue 2, pp 171–176 | Cite as

Accurate integration of scalar equations in multiscalar-tensor theory

  • V. G. Bagrov
  • V. V. Obukhov
Physics Of Elementary Particles And Field Theory


The integration of scalar equations in theories generalizing Brans—Dicke—Jordan—Fierz scalar—tensor theory is considered. Conditions under which these equations may be integrated by complete variable separation are established. Under these conditions, the scalar equations take the form of classical equations of motion for a single particle moving in scalar space in an external force field.


Classical Equation External Force Force Field Single Particle Scalar Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Jordan, Z. Phys.,157, 112 (1959).Google Scholar
  2. 2.
    M. Fierz, Helv. Phys. Acta,29, 128 (1956).Google Scholar
  3. 3.
    C. Brans and R. H. Dicke, Phys. Rev.,124, 925 (1961).Google Scholar
  4. 4.
    P. G. Bergmann, Int. J. Theor. Phys.,1, 25 (1968).Google Scholar
  5. 5.
    K. Nordtvedt, Astrophys. J.,161, 1059 (1970).Google Scholar
  6. 6.
    R. V. Wagoner, Phys. Rev. D,1, 3209 (1970).Google Scholar
  7. 7.
    N. Damour and K. Nordtvedt, Phys. Rev. D,8, 3436 (1993).Google Scholar
  8. 8.
    V. N. Shapovalov, Sib. Mat. Zh., No. 20, 1117 (1979).Google Scholar
  9. 9.
    V. G. Bagrov and V. V. Obukhov, Teor. Mat. Fiz., No. 97, 250 (1993).Google Scholar
  10. 10.
    V. G. Bagrov and V. V. Obukhov, Class. Quant. Grav.,7, 19 (1990).Google Scholar
  11. 11.
    S. D. Odintsov, Fortschr. Phys.,39, 621 (1991).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • V. G. Bagrov
  • V. V. Obukhov

There are no affiliations available

Personalised recommendations