Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

  • Theory And Technology Of Sintering Processes, Thermal And Thermochemical Treatment
  • Published:

Sintering of ultradisperse powders based on zirconium dioxide (review)

  • 171 Accesses

  • 8 Citations

Abstract

We consider the effect of the starting powder characteristics (purity, grain size and shape, size distribution, sintering aids content, etc.), green compact microstructure (density and porosity distribution), and processing parameters (including temperature, exposure time, rate of heating or cooling of the medium) on sintering of ultrafine ZrO2-based powders. We discuss various sintering techniques: hydrothermal sintering, microwave sintering, hot pressing, sinter—forging, sinter-HIP, and gas-pressure sintering.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    V. V. Skorokhod, Powdered Materials Based on Refractory Metals and Compounds [in Russian], Tekhnika, Kiev (1982).

  2. 2.

    V. V. Skorokhod and S. M. Solonin, Physicometallurgical Principles of Sintering [in Russian], Metallurgiya, Moscow (1984).

  3. 3.

    V. V. Skorokhod, Yu. M. Solonin, and I. V. Uvarova, Chemical, Diffusional, and Rheological Processes in the Technology of Powdered Materials [in Russian], Nauk. Dumka, Kiev (1990).

  4. 4.

    T. Chartier, T. Gervais, L. Chermant, et al., “Effect of powder processing on microstructure of zirconia during sintering,” J. Eur. Ceram. Soc.,10, No. 4, 299–305 (1992).

  5. 5.

    E. V. Dudnik, Z. A. Zaitseva, A. V. Shevchenko, and L. M. Lopato, “Methods for obtaining disperse powders based on zirconium dioxide (Review),” Poroshk. Metall., No. 7, 24–30 (1993).

  6. 6.

    V. L. Balkevich, Technical Ceramic [in Russian], Stroiizdat, Moscow (1984).

  7. 7.

    M. Paulus, “The influence of powder synthesis techniques on processes occurring during compact formation and its sintering,” in: Proceedings of the Conference on Emergent Process Methods for High-Technology Ceramic, New York/London (1984), pp. 177–191.

  8. 8.

    H. Y. Lu and S. Y. Chen, “Sintering donor- and acceptor-codoped 3% (mol.) Y2O3-ZrO2,” J. Mater. Sci.,27, No. 7, 4791–4796 (1992).

  9. 9.

    L. Higgin and T. Vakada, “Effect of additives and impurities on the microstructure and the mechanical properties of ceramic based on CeO2-ZrO2,” Zh. Nauki i Tekhnologii Kitaiskogo Univ.,20, No. 3, 328–335 (1990).

  10. 10.

    F. C. Wu and S. C. Yu, “Effect of SiO2 and Al2O3 additives on the sintering of MgO—containing zirconia,” Mater. Res. Bull.,23, No. 12, 1773–1780 (1988).

  11. 11.

    E. P. Butler, “Transformation-toughened zirconia ceramics,” Mater. Sci. Technol.,1, No. 6, 417–433 (1985).

  12. 12.

    Y. Yoshizawa and T. Sakuma, “Role of grain-boundary glass phase on the superplastic deformation of tetragonal zirconia polycrystal,” J. Am. Ceram. Soc.73, No. 10, 3069–3073 (1990).

  13. 13.

    V. S. Bakunov, V. L. Balkevich, A. S. Vlasov, et al., Ceramic Made from Highly Refractory Oxides [in Russian], Metallurgiya, Moscow (1977).

  14. 14.

    P. Y. Dalvi and A. K. Kulkarni, “Sintering of zirconia with various stabilizers,” Trans. Indian Ceram. Soc.,42, No. 2, 35–38 (1983).

  15. 15.

    P. Recio, J. R. Jurado, C. Pascual, and C. Moure, “Y/Er-doped tetragonal zirconia polycrystalline solid electrolyte. 1. Powder processing,” J. Mater. Sci.,23, No. 8, 4349–4356 (1988).

  16. 16.

    S. Maschio, E. Bischoff, O. Sbazero, and S. Mariam, “Sintering aids for Ce-TZP,” in: Proceedings of the International Conference Zirconia '88: Adv. Zirconia Sci. and Technol., London/New York (1989), pp. 171–180.

  17. 17.

    S. L. Swang and I. W. Chen, “Grain size control of tetragonal zirconia polycrystals using the space charge concept,” J. Am. Ceram. Soc.,73, No. 11, 3269–3277 (1990).

  18. 18.

    J.-H. Parc and S.-W. Moon, “Stability and sinterability of tetragonal zirconia polycrystals costabilized by CeO2 and various oxides,” J. Mater. Sci. Lett.,11, No. 15, 1046–1048 (1992).

  19. 19.

    G. S. A. M. Theunissen, A. J. A. Winnubst, and A. J. Burggraaf, “Effect of dopants on sintering behavior and stability of tetragonal zirconia ceramics,” J. Eur. Ceram. Soc.,9, No. 4, 251–263 (1992).

  20. 20.

    T. Sato, S. Ohtaki, T. Endo, and M. Shimada, “Improvement of thermal stability of yttria-doped tetragonal zirconia polycrystals by alloying with various oxides,” Int. J. High Technol. Ceram., No. 2, 167–177 (1986).

  21. 21.

    J. G. Duh, H. T. Dsi, and W. Y. Hsu, Synthesis and sintering behavior of CeO2-ZrO2 ceramics,” J. Mater. Sci.,23, No. 9, 2786–2791 (1988).

  22. 22.

    J. G. Duh and J. J. Hwung, “The effect of MgO dopants on sinterability and microstructure of yttria-doped tetragonal zirconia polycrystals,” in: Adv. Ceram. Sci. and Technol. of Zirconia, Columbus, Ohio USA (1981), Vol. 3, pp. 230–231.

  23. 23.

    Yahg Hong and J.-S. Bow, “Effect of MgO addition on the microstructure development of 3% (mol.) Y2O3-ZrO2,” J. Am. Ceram. Soc.,72, No. 2, 228–231 (1989).

  24. 24.

    Tazuo Kuratami, Jpn. Pat. Appl. 58–135 179, “Ceramic shaped articles based on stabilized zirconium dioxide and a method for their fabrication”; Publ. August 11, 1983.

  25. 25.

    E. Barringer, N. Jubb, B. Fegley, et al., “Processing monosized powders,” in: Ultrastructure Processing of Ceramics, Glasses, and Composites (1984), pp. 315–333.

  26. 26.

    W. H. Rhodes, “Agglomeration and particle size effects on sintering yttia-stabilized zirconia,” J. Am. Ceram. Soc.,64, No. 1, 19–22 (1981).

  27. 27.

    G. S. Theunissen, A. M. Winnubst, and A. J. Burggraaf, “Microstructure development during sintering of ultra-fine grained Y—TZP,” in: Proceedings of the International Conference Zirconia '88: Adv. Zirconia Sci. and Technol., London/New York (1989), pp. 325–335.

  28. 28.

    M. van de Graaf, J. ter Mast, and A. Burggraaf, “Microstructure and sintering kinetics of highly reactive ZrO2-Y2O3 ceramics,” J. Mater. Sci.,20, No. 4, 1417–1418 (1985).

  29. 29.

    V. V. Panichkina, “Possibilities for using disperse powders for obtaining sintered high-density materials,” Zh. Vses. Khim. O-va im. D. I. Mendeleeva,36, No. 2, 170–173 (1991).

  30. 30.

    M. A. Occhinero, S. L. Marallo, A. E. Karas, and B. E. Novich, “Influence of surface area and particle size distribution on sintering and microstructure development,” in: Proceedings of the International Conference on Sinter Adv. Ceram., Westerville, Ohio (1990), pp. 357–370.

  31. 31.

    E. Slamovich and F. F. Lange, “Densification behavior of single crystal and polycrystalline spherical particles of zirconia,” J. Am. Ceram. Soc.,73, No. 11, 3368–3375 (1990).

  32. 32.

    J. M. Wu and C. H. Wu, “Sintering behavior of highly agglomerated ultrafine zirconia powders,” J. Mater. Sci.,23, No. 9, 3290–3299 (1988).

  33. 33.

    A. V. Galakhov, S. V. Kutsev, V. A. Kryuchkov, et al., “Effect of shaping pressure on sinterability of submicron powders of tetragonal zirconium dioxide,” Ogneupory, No. 2, 5–11 (1993).

  34. 34.

    Michael J. Readey, Ran-Rong Lee, John W. Halloran, and Arthur H. Heuer, “Processing and sintering of ultrafine Mg-ZrO2 and (MgO, Y2O3)-ZrO2 powders,” J. Am. Ceram. Soc.,73, No. 6, 1499–1503 (1990).

  35. 35.

    M. A. Occhionero and J. W. Halloran, “The influence of green density upon sintering,” Mater. Sci. Res.,916, 24–30 (1984).

  36. 36.

    M. Yu. Bal'shin, Powder Materials Science [in Russian], Metallurgizdat, Moscow (1948).

  37. 37.

    A. N. Nikolenko and M. S. Koval'chenko, “Analysis of random packing of identical particles. IV. Zonal separation in powder materials,” Poroshk. Metall., No. 2, 22–26 (1986).

  38. 38.

    S. M. Solonin, “Contemporary views of the process of sintering of powdered materials,” in: Theory and Technology of Shaping and Sintering [in Russian], Inst. Probl. Materialoved., Akad. Nauk UkrSSR, Kiev (1985), pp. 39–44.

  39. 39.

    A. Roosen and H. Hausner, “Sintering kinetics of ZrO2 powders,” in: Proceedings, Second Conference on Science and Technology of Zirconia, The American Ceramic Society, Columbus, Ohio (1984), Vol. 12, pp. 714–721.

  40. 40.

    Roman Pampuch, “ZrO2 micropowders as model systems for the study of sintering.” in: Proceedings, Second Conference on Science and Technology of Zirconia, The American Ceramic Society, Columbus, Ohio (1984), Vol. 12, pp. 733–743.

  41. 41.

    A. Roosen and H. Hausner, “The influence of processing conditions on the sintering behavior of coprecipitated calcia-stabilized zirconia powders,” in: Proceedings of the Fifth CIMTEC, Ceramic Powders: Preparation, Consolidation, and Sintering, Amsterdam/Oxford/New York (1983), pp. 773–782.

  42. 42.

    E. V. Dudnik, Z. A. Zaitseva, A. V. Shevchenko, and L. M. Lopato, “Methods for shaping disperse powders based on zirconium dioxide (Review),” Poroshk. Metall., No. 8, 16–23 (1993).

  43. 43.

    R. Ponraj, V. E. Annamalai, S. Ramakrishna et al., “Mechanical properties of low-temperature sintered Ce-TZP. 1. Bending strength and Weibull modulus,” J. Mater. Sci. Lett.,11, No. 21, 1414–1415 (1992).

  44. 44.

    J.-L. Shi, J.-H. Gao, Z. X. Lin, and T. S. Yen, “Sintering behavior of fully agglomerated zirconia compacts,” J. Am. Ceram. Soc.,73, No. 5, 994–997 (1991).

  45. 45.

    E. V. Knyazev, L. I. Trusov, S. P. Shumanova, et al., “Investigation of sintering kinetics for ultradisperse zirconium dioxide,” in: Physical Chemistry and Technology of Disperse Powders [in Russian], Inst. Probl. Materialoved., Akad. Nauk UkrSSR (1984), pp. 116–120.

  46. 46.

    Ha-Young Lee, Werner Riehemann, and Barry Leslie Mordike, “Sintering of nanocrystalline ZrO2 and zirconia toughened alumina (ZTA),” J. Eur. Ceram. Soc.,10, No. 3, 245–253 (1992).

  47. 47.

    A. V. Galakhov, I. V. Vyazov, and V. Ya. Shevchenko, “Compaction and sintering of agglomerated ultradisperse ZrO2 powders,” Ogneupory, No. 9, 12–16 (1989).

  48. 48.

    W. H. Juan and R. J. Brooc, in: Processing of Zirconia Ceramics: The Influence of Zirconia, Columbus, Ohio (1981), Vol. 3, pp. 130–131.

  49. 49.

    J. K. Chane-Ching, A. M. Le Gavic, and D. Broussand, “Effect of physicochemical characteristics of ZrO2-Y2O3 powders on the compaction behavior and microstructure development,” in: Proceedings of the International Conference Zirconia '88: Adv. Zirconia Sci. and Technol., London/New York (1989), pp. 29–42.

  50. 50.

    H.-Y. Lee, W. Riehemann, and B. L. Mordike, “Sintering of nanocrystalline ZrO2 and zirconia toughened alumina (ZTA),” J. Eur. Ceram. Soc.,10, No. 3, 245–253 (1992).

  51. 51.

    P. Duran, P. Rechio, J. R. Jurado, et al., “Preparation, sintering and properties of translucent ErO2-doped tetragonal ziconia,” J. Am. Ceram. Soc.,72, No. 11, 2088–2093 (1989).

  52. 52.

    S. Rajendran, “Production of reactive single and multicomponent ceramic oxide powders and fabrication of high-strength ceramics,” J. Mater. Sci.,27, No. 2, 433–440 (1992).

  53. 53.

    N. M. Ghineim and S. B. Hanna, “Sintering and microstructure of ultrafine yttria-zirconia compacts,” J. Mater. Sci.,25, No. 10, 5192–5198 (1990).

  54. 54.

    E. Lucchini, S. Maschio, and E. Salvador, “Influence of the sintering conditions on the mechanical properties of a ZrO2-CeO2 10.3 mol.% ‘alloy’,” Ceramic Acta,3, No. 2, 33–39 (1991).

  55. 55.

    V. E. Annamalsi, C. V. Gokularahtam, and R. Krishnamurthy, “On the sintering behavior of 12 mol % ceriastabilized zirconia,” J. Mater. Sci. Lett.,11, No. 10, 642–644 (1992).

  56. 56.

    A. Smith and J.-F. Baumard, “Sinterability of tetragonal ZrO2 powders,” Am. Ceram. Soc. Bull.,66, No. 7, 1144–1148 (1987).

  57. 57.

    F. F. Lange, H. Shubert, N. Claussen, and M. Ruhle, “Effect of attrition milling and post-sintering heat treatment on fabrication microstructure and properties of transformation toughened ZrO2,” J. Mater. Sci.,21, No. 3, 768–774 (1986).

  58. 58.

    P. Duran, M. Gonzelez, I. R. Jurado, and C. Moure, “Processing—microstructure—mechanical properties relationship in Ce-doped tetragonal zirconia,” in: Proceedings of Third International Conference, Ceram. Powder Sci.: Powder Process Science, Westerville, Ohio (1990), pp. 945–952.

  59. 59.

    P. Duran, P. Recio, J. R. Jurado, et al., “Y(Er)-doped tetragonal zirconia polycrystalline solid electrolyte. 2. Microstructure and mechanical properties,” J. Mater. Sci.,24, No. 2, 708–716 (1989).

  60. 60.

    R. Oberaker, K. Derfschmidt, T. Liu, and F. Thummler, “Application of rate controlled sintering in the production of ZrO2-based ceramics materials,” in: Proceedings, Eighth World Round Table Conference on Sintering, New York (1989), pp. 337–356.

  61. 61.

    A. V. Ragulya, “Kinetics and mechanism of sintering of ultradisperse powders of materials with different types of chemical bonds under high-speed heating conditions,” Dissertation in competition for the academic degree of Candidate of the Technical Sciences, Kiev (1992).

  62. 62.

    S. Ishida, “Effect of firing atmosphere on sintering of zirconia,” in: Advances in Ceramics: Science and Technology of Zirconia, Columbus, Ohio (1981), Vol. 3, pp. 455–463.

  63. 63.

    M. Readey and D. W. Readey, “Sintering of ZrO2 in HCl atmospheres,” J. Am. Ceram. Soc.,69, No. 7, 581–582 (1986).

  64. 64.

    S. P. Badwai, J. Drennan, A. E. Hughes, and B. S. Sexton, “A study of impurity phase segregation in fully stabilized yttria-zirconia,” Mater. Sci. Forum,34–36, 195–199 (1988).

  65. 65.

    A. E. Hughes, “The identification of intergranular impurity phase in zirconia-based ionic conductors,” Mater. Sci. Forum,34–36, No. 2, 243–247 (1988).

  66. 66.

    S. P. S. Badwal and A. E. Hughes, “The effect of sintering atmosphere on impurity phase formation and grain boundary resistivity in Y2O3-fully stabilized ZrO2,” J. Eur. Ceram. Soc.,10, No. 2, 115–122 (1992).

  67. 67.

    M. Yishimura and S. Somiya, “Hydrothermal reaction sintering of monoclinic zirconia,” in: Advances in Ceramics: Science and Technology of Zirconia, Columbus, Ohio (1981), Vol. 3, pp. 455–463.

  68. 68.

    “Microwave sintering of ceramic,” Galvanotechnik,83, No. 8, 2748 (1992).

  69. 69.

    L. Kempler, “Forming the pieces of the ceramic puzzle,” Mater. Eng.,107, No. 6, 23–26 (1990).

  70. 70.

    J. Wilson and S. M. Kuns, “Microwave sintering of partially stabilized zirconia,” J. Am. Ceram. Soc.,71, No. 1, 40–41 (1988).

  71. 71.

    J. Samuels and J. R. Drandon, “Effect of composition on the enhanced microwave sintering of alumina-based ceramic composites,” J. Mater. Sci.,27, No. 12, 3259–3265 (1992).

  72. 72.

    Akira Yamakawa and Eiji Kamijo, “Ceramic compacts comprising zirconia,” Eur. Pat. Appl. 85301167.4, Japan; Publ. October 9, 1985.

  73. 73.

    R. J. Brook, “Preparation and electrical behavior of zirconia ceramics,” in: Advances in Ceramics: Science and Technology of Zirconia, Columbus, Ohio (1981), Vol. 3, 272–285 (1981).

  74. 74.

    T. Masaki and K. Shinjo, “Sintered zirconium dioxide and a method for obtaining it,” Eur. Pat. Appl. 86111520.2, Japan; Publ. April 22, 1987.

  75. 75.

    T. Masaki, N. Nakajima, and K. Shinjo, “High-temperature mechanical properties of T-PSZ HIP'ed under an oxygen-containing atmosphere,” J. Mater. Sci. Lett.,5, No. 11, 1115–1118 (1985).

  76. 76.

    M. Iararatha, M. Yoshimura, and S. Somiya, “Hot pressing of Y2O3-stabilized ZrO2 with Cr2O2 additions,” J. Mater. Sci.,21, 591–596 (1986).

  77. 77.

    Takaki Masaki, “Mechanical properties of toughened ZrO2-Y2O3 ceramics,” J. Am. Ceram. Soc.,69, No. 8, 638–640 (1986).

  78. 78.

    “Ceramic and a method for its production,” French Pat. 2566767; Publ. January 3, 1986.

  79. 79.

    A. J. Burgraaf, “Stuijts memorial lecture 1991: Some developments in ceramics science and technology,” J. Eur. Ceram. Soc.,9, No. 4, 245–250 (1992).

  80. 80.

    Prakash C. W. Panda and Raj Rish Jenodaw, “Sintering—forging characteristics of fine-grained zirconia,” J. Am. Ceram. Soc.,71, No. 12, 507–509 (1988).

  81. 81.

    M. M. R. Boutz, A. J. A. Winnubst, A. J. Burggraaf, et al., “Low temperature superplastic flow of yttria stabilized tetragonal zirconia polycrystals,” in: Proceedings, Second European Ceramic Society Conference, Augsburg, Germany (1991). (cited in [79])

  82. 82.

    P. Den Exter, “Synthesis, microstructure and mechanical properties of zirconia—alumina composites,” Ph.D. Thesis, University of Twente, Enschede, The Netherlands, (December 1991). (Cited in [79].)

  83. 83.

    A. P. Druschitz and J. G. Schroth, “Hot isostatic pressing of presintered yttria-stabilized zirconia ceramic,” J. Am. Ceram. Soc.,72, No. 9, 1591–1597 (1989).

  84. 84.

    M. Matsuka, Y. Miyamoto, M. Shimada, and M. Koizumi, “Study of the densification of Y2O3-PSZ by HIP-ing,” in: Science and Technology of Zirconia III. Advances in Ceramics. The American Ceramic Society, Columbus, Ohio USA (1986), pp. 184–185.

  85. 85.

    S. Rajendran, “Production of reactive single- and multicomponent ceramic oxide powders and fabrication of high-strength ceramics,” J. Mater. Sci.,27, No. 2, 433–440 (1992).

  86. 86.

    T. Sato, T. Endo, and M. Shimado, “Postsintering hot isostatic pressing of ceria-doped tetragonal zirconia/alumina composite in an argon—oxygen gas atmosphere,” J. Am. Ceram. Soc.,72, No. 5, 761–764 (1989).

  87. 87.

    C. L. Hogg, R. K. Stringer, and M. V. Swain, “Grain-boundary cavitation and bloating of isostatically hot-pressed magnesia-partially stabilized zirconia on air annealing,” J. Am. Ceram. Soc.,69, No. 3, 248–251 (1986).

  88. 88.

    R. H. Houssner and N. Claussen, “Strengthening of ceria-doped tetragonal zirconia polycrystals by reduction-induced phase transformation,” J. Am. Ceram. Soc.,72, No. 6, 1044–1046 (1989).

  89. 89.

    M. Sheppard Laurel, “The evolution of HIP continues,” Am. Ceram. Bull.,71, No. 3, 313–323 (1992).

  90. 90.

    R. R. Wills, M. C. Brockway, and L. G. McCoy, “Hot isostatic pressing of ceramic materials,” in: Proceedings of the Conference on Emergent Proccess Methods for High-Technology Ceramic, New York-London (1984), pp. 559–570.

  91. 91.

    H. U. Kessel, H. Kolaska, and K. Dreyer, “Manufacture and properties of gas-pressure sintered zirconia,” Powder Metall. Int.,20, No. 5, 35–39 (1988).

Download references

Additional information

Institute of Materials Science, Ukrainian Academy of Sciences, Kiev. Translated from Poroshkovaya Metallurgiya, Nos. 5/6, pp. 43–52, May–June, 1995.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dudnik, E.V., Zaitseva, Z.A., Shevchenko, A.V. et al. Sintering of ultradisperse powders based on zirconium dioxide (review). Powder Metall Met Ceram 34, 263–271 (1995). https://doi.org/10.1007/BF00560128

Download citation

Keywords

  • Grain Size
  • Microstructure
  • Porosity
  • Dioxide
  • Microwave