Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Wide-range equation of state of matter. II. Microfield model

  • 32 Accesses

  • 1 Citations

Abstract

Among the models proposed for theoretically calculating wide-range equations of state of matter we single out: the ionization — chemical equilibrium model for the gas — plasma state of matter containing a qualitatively new nonidealness correction, the microfield correction; the quantum — statistical model for compressed condensed matter; the quasiband model for the transition region between these states. It is shown that, taken together, these models are in good agreement with experiments, give the most accurate equation of state in the supercritical region to date, and provide a qualitative explanation of the optical properties of matter.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    V. S. Volokitin, I. O. Golosnoi, and N. N. Kalitkin, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 11, 23 (1994).

  2. 2.

    C. F. Hooper Jr., R. C. Mancini, D. P. Kilcrease, L. A. Woltz, M. C. Richardson, D. K. Bradley, and P. A. Jaanimagi, Proc. SPIE Int. Soc. Opt. Eng.,913, 129 (1988); (Proc. Conf. on High Intensity Laser-Matter Interactions, Los Angeles, CA, January, 1988).

  3. 3.

    V. G. Sevast'yanenko, Preprint No. 30 [in Russian], Institute of Theoretical and Applied Mechanics, Siberian Branch of the Academy of Sciences of the USSR, Novosibirsk (1980).

  4. 4.

    I. I. Sobelman, Introduction to the Theory of Atomic Spectra, Pergamon Press, Oxford (1973).

  5. 5.

    G. Ecker, Theory of Fully Ionized Plasmas, Academic Press, New York (1972).

  6. 6.

    J. Holtsmark, Ann. Phys. (Leipzig),58, 577 (1919).

  7. 7.

    A. A. Broyles, Phys. Rev.,100, 1181 (1955).

  8. 8.

    Yu. K. Kurilenkov and V. S. Filinov, Teplofiz. Vys. Temp.,18, No. 4, 657 (1980).

  9. 9.

    I. O. Golosnoi, Math. Model,5, No. 6, 11 (1993).

  10. 10.

    C. A. Iglesias, J. L. Lebowitz, and D. McGowan, Phys. Rev. A,28, No. 3, 1667 (1983).

  11. 11.

    C. A. Iglesias, H. E. DeWitt, J. L. Lebowitz, D. MacGowan, and W. B. Hubbard, Phys. Rev. A,31, No. 3, 1698 (1985).

  12. 12.

    V. S. Volokitin, I. O. Golosnoi, and N. N. Kalitkin, (Papers from the FKhSV-5 Meeting), Math. Model.,5, No. 8, 71 (1993).

  13. 13.

    A. Alastuey, C. A. Iglesias, J. L. Lebowitz, and D. Levesque, Phys. Rev. A,30, No. 5, 2537 (1984).

  14. 14.

    N. N. Kalitkin, I. V. Ritus, and A. M. Mironov, Preprint No. 43 [in Russian], Institute of Applied Mathematics, Academy of Sciences of the USSR, Moscow (1983).

  15. 15.

    I. O. Golosnoi, Math. Model.,4, No. 6, 3 (1992).

  16. 16.

    J. F. Springer, M. A. Pokrant, and F. A. Stevens Jr., J. Chem. Phys.,58, No. 11, (1973).

  17. 17.

    L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Nonrelativistic Theory [in Russian], Vol. 3 of Theoretical Physics, Nauka, Moscow (1989) [translation of previous ed. publ. by Pergamon Press, Oxford (1977)].

  18. 18.

    J. W. Dufty, D. B. Boercker, and C. A. Iglesias, Phys. Rev. A,31, No. 3, 1681 (1985).

  19. 19.

    I. O. Golosnoi and N. N. Kalitkin, Preprint No. 73 [in Russian], Institute of Applied Mathematics, Academy of Science of the USSR, Moscow (1990).

  20. 20.

    I. O. Golosnoi, Math. Model.,3, No. 9, 49 (1991).

  21. 21.

    N. N. Kalitkin, Math. Model.,1, No. 2, 64 (1989).

  22. 22.

    V. S. Volokitin and N. N. Kalitkin, Preprint No. 11 [in Russian], Institute of Applied Mathematics, Academy of Sciences of the USSR, Moscow (1991).

  23. 23.

    V. S. Volokitin and N. N. Kalitkin, Math. Model.,3, No. 5, 49 (1991).

  24. 24.

    V. S. Volokitin, Math. Model.,3, No. 8, 47 (1991).

  25. 25.

    V. S. Volokitin, Math. Model.,3, No. 7, 51 (1991).

  26. 26.

    N. N. Kalitkin, Mathematical Modeling: Physicochemical Properties of Matter [in Russian], Nauka, Moscow (1989), pp. 114–161.

  27. 27.

    R. M. More, J. F. Barnes, and R. D. Cowan, Bull. Am. Soc. II,21, 1153 (1976).

  28. 28.

    K. S. Holian, Report No. LA-10160-MS, Los Alamos National Laboratory, Los Alamos, NM (1985).

  29. 29.

    D. A. Young, J. K. Wolford, F. J. Rogers, and K. S. Holian, Phys. Lett.,108, A, No. 3, 157 (1985).

  30. 30.

    E. N. Avrorin, B. K. Vodolaga, N. P. Voloshin, G. V. Kovalenko, V. F. Kuropatenko, V. A. Simonenko, and B. T. Chernovolyuk, Zh. Eksp. Teor. Fiz.,93, 613 (1987) [Sov. Phys. JETP,66, 347 (1987)].

  31. 31.

    N. H. March, W. Kohn, P. Kashishta, et al., Theory of a Nonuniform Electron Gas [Russian translation], Mir, Moscow (1987).

  32. 32.

    A. T. Sapozhnikov and A. V. Pershina, Vopr. At. Nauk. Tekh. Ser. Metod. Progr. Chisl. Resh. Zadach. Math. Fiz.,4, No. 6, 47 (1979).

  33. 33.

    V. F. Kuropatenko, Math. Model.,4, No. 12 112 (1992).

Download references

Additional information

The work was performed with the financial support of the Russian Fund for fundamental research (Grant No. 93-01-861, TEFIS computer library of thermophysical properties of matter).

Deceased.

Institute of Mathematical Modeling, Russian Academy of Sciences. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 11–31, April, 1995.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Volokitin, V.S., Golosnoi, I.O. & Kalitkin, N.N. Wide-range equation of state of matter. II. Microfield model. Russ Phys J 38, 336–354 (1995). https://doi.org/10.1007/BF00560096

Download citation

Keywords

  • Optical Property
  • Statistical Model
  • Transition Region
  • Chemical Equilibrium Model
  • Chemical Equilibrium