Russian Physics Journal

, Volume 38, Issue 11, pp 1157–1168

Method of movable cellular automata as a tool for simulation within the framework of mesomechanics

  • S. G. Psakhie
  • Y. Horie
  • S. Yu. Korostelev
  • A. Yu. Smolin
  • A. I. Dmitriev
  • E. V. Shilko
  • S. V. Alekseev
Article

Conclusion

The proposed MCA method is based on mesomechanics of heterogeneous media [4, 5, 9]. It is connected first with the ability to describe the material as a set of structural elements of deformation [9]. The role of the structural unit in the MCA method is played by the element (movable cellular automaton). The expressions of interparticle interactions used, as well as the rules of changing the state of the elements, allow us to simulate a wide range of phenomena including melting, chemical reactions, and phase transformations. The characteristic size of the element and its properties are defined based on the features of the model constructed in the framework of mesomechanics as described in [9]. Therefore the MCA method as a computational technique allows us to realize the principles of mesomechanics when simulating material response to external loading of different types. This method is highly recommended in computer-aided design of new materials.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. T. Oden, Finite Elements in Continuum Mechanics [Russian translation], Mir, Moscow (1976).Google Scholar
  2. 2.
    M. L. Wilkins, Computational Methods in Hydrodynamics [Russian translation], Mir, Moscow (1967).Google Scholar
  3. 3.
    T. V. Zhukova, P. V. Makarov, T. M. Platova, et al., Fiz. Goren. Vzryva,23, No. 1, 29–34 (1987).Google Scholar
  4. 4.
    V. E. Panin, V. A. Likhachev, Yu. V. Grinyaev, et al., Structural Levels of Deformation in Solids [in Russian], Nauka, Novosibirisk (1985).Google Scholar
  5. 5.
    V. E. Panin, V. E. Egorushkin, P. V. Makarov, et al., Physical Mesomechanics and Computer-Aided Design of Materials [in Russian], Nauka, Novosibirisk (1995), Vol. 1; V. E. Panin, P. V. Makarov, S. G. Psakhie, et al., Physical Mesomechanics and Computer-Aided Design of Materials [in Russian], Nauka, Novosibirisk (1995), Vol 2.Google Scholar
  6. 6.
    V. E. Panin, Izv. Vuzov. Fiz., No. 4, 5–18 (1992).Google Scholar
  7. 7.
    V. E. Panin, V. A. Klimenov, S. G. Psakh'e, et al., New Materials and Technologies. Design of New Materials and Hardening Technologies [in Russian], Nauka, Novosibirisk (1993).Google Scholar
  8. 8.
    S. Psakhie, International Workshop on Shock Synthesis of Materials, Georgia Institute of Technology, Atlanta (1994), pp. 94–97.Google Scholar
  9. 9.
    V. E. Panin, Izv. Vuzov. Fiz., No. 11, 5 (1995).Google Scholar
  10. 10.
    Walter Thiele, “Die temperatur Bhängigkeit der plastizität und Zugfestigkeit von Steinsalzkristallen,” Z. Physik, 763–776 (1975).Google Scholar
  11. 11.
    R. F. Hochman, “Surface modification,” Advanced Materials and Processes, No. 1, 29–30 (1995).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • S. G. Psakhie
  • Y. Horie
  • S. Yu. Korostelev
  • A. Yu. Smolin
  • A. I. Dmitriev
  • E. V. Shilko
  • S. V. Alekseev

There are no affiliations available

Personalised recommendations