Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Eastern European developments in failure mechanics

  • 27 Accesses

This is a preview of subscription content, log in to check access.

References

  1. 1.

    A. A. Griffith, “The phenomena of rupture and flow in solids,” Phil. Trans. R. Soc.,A221, No. 1, 163–198 (1921); A. A. Griffith, “The theory of rupture,” Proc. 1st Int. Congress of Appl. Mech., Delft (1924), pp. 53–63.

  2. 2.

    S. P. Timoshenko, The History of Materials Resistance Science [in Russian], Gostekhizdat, Moscow (1957).

  3. 3.

    A. F. Ioffe, M. V. Kirpicheva, and M. A. Levitskaya, “Crystal deformation and strength,” Zh. Rus. Fiz.-Khim. Obshch. im. D. I. Mendeleeva, Ch. Fiz.,56, 489–503 (1924).

  4. 4.

    V. V. Panasyuk, “Current topics in failure mechanics,” Fiz.-Khim. Mekh. Mater., No. 2, 7–27 (1982).

  5. 5.

    Ya. B. Fridman, Mechanical Properties of Metals [in Russian], 2 vols., Mashinostroenie, Moscow (1974).

  6. 6.

    V. V. Panasyuk (ed.), The Mechanics of Material Failure and Strength (Reference Manual) [in Russian], Vols. 1–4, Naukova Dumka, Kiev (1988).

  7. 7.

    V. V. Panasyuk, The Mechanics of Quasibrittle Failure [in Russian], Naukova Dumka, Kiev (1991).

  8. 8.

    G. S. Pisarenko (ed.), The Strengths of Materials and Constructional Components under Extreme Conditions [in Russian], 2 vols., Naukova Dumka, Kiev (1980).

  9. 9.

    V. I. Likhtman, E. D. Shchukin, and P. A. Rebinder, The Physicochemical Mechanics of Metals [in Russian], Izd. Akad. Nauk SSSR, Moscow (1962).

  10. 10.

    Yu. P. Zheltov and S. A. Khristianovich, Izv. Akad. Nauk SSSR, ONTI, No. 5, 3–41 (1955); S. A. Khristianovich, Mechanics of Continuous Media [in Russian], Nauka, Moscow (1981).

  11. 11.

    G. I. Barenblatt, “The mathematical theory of equilibrium cracks formed in brittle failure,” Zh. Prikl. Mekh. Tekh. Fiz. No. 4, 3–57 (1961); G. I. Barenblatt, “Some general concepts in the mathematical theory of brittle failure,” Prikl., Mat. Mekh., No. 4, 630–643 (1964).

  12. 12.

    V. V. Panasyuk, Limiting Equilibrium in a Brittle Body Containing Cracks [in Russian], Naukova Dumka, Kiev (1968).

  13. 13.

    V. Z. Parton and E. M. Morozov, Mechanics of Elastoplastic Failure [in Russian], Nauka, Moscow (1974).

  14. 14.

    G. P. Cherepanov, Brittle-Failure Mechanics [in Russian], Nauka, Moscow (1974).

  15. 15.

    A. P. Aleksandrov and S. N. Zhurkov, The Brittle Failure Phenomenon [in Russian], Gostekhizdat, Moscow (1933).

  16. 16.

    V. I. Mossakovskii, P. A. Zagubizhenko, and P. E. Berkovich, “A problem for a plane containing a crack,” Prikl. Mekh., No. 8, 108–111 (1965).

  17. 17

    D. D. Ivlev, “The theory of quasibrittle failure cracks,” Zh. Prikl. Mekh. Tekh. Fiz., No. 6, 88–128 (1967); D. D. Ivlev, The Theory of Ideal Plasticity [in Russian], Nauka, Moscow (1966).

  18. 18.

    Ya. B. Fridman and E. M. Morozov, “Variational principles for mechanical failure,” Izv. Vyssh. Uchebn. Zaved., Mashinostroenie, No. 4, 56–71 (1962).

  19. 19.

    G. P. Cherepanov, “Crack propagation in a continuous medium,” Prikl. Mat. Mekh., No. 3, 476–488 (1967).

  20. 20.

    J. Rice, “A path-independent integral and approximate analysis of stress concentrations in slots and cracks,” Prikl. Mekh., Ser. E, No. 4, 340–349 (1968); J. Rice, “Mathematical methods in failure mechanics,” in: Failure [Russian translation], Mir, Moscow (1975), Vol. 2, pp. 204–249.

  21. 21.

    V. I. Kondaurov, Sh. A. Mukhamediev, L. V. Nikitin, and E. I. Ryzhak, Rock Failure Mechanics [in Russian], Nauka, Moscow (1987).

  22. 22.

    G. R. Irwin, “Analysis of stresses and strains near the end of a crack traversing a plate,” J. Appl. Mech.,24, No. 3, 361–364 (1957).

  23. 23.

    K. Wieghardt, “Über das Spalten and Zereissen elastischer Körper,” Z. Math. Phys.,50, 60–103 (1967).

  24. 24.

    M. Ya. Leonov and V. V. Panasyuk, “Growth of maximal cracks in a solid,” Prikl. Mekh., No.4, 391–401 (1959); M. Ya. Leonov and V. V. Panasyuk, “Growth of a circular crack,” Dokl. AN URSR, No. 2, 165–168 (1961).

  25. 25.

    V. V. Panasyuk, “On the theory of crack growth in brittle-body deformation,” Dokl. AN URSR, No. 9, 1185–1188 (1960).

  26. 26.

    P. M. Vitvits'kii and M. Ya. Leonov, “Failure in a plate containing a slot,” Prikl. Mekh., No. 7, 516–520 (1961).

  27. 27.

    A. E. Andreikov, Failure in a Quasielastic Body Containing Cracks in a Compound State of Strain [in Russian], Naukova Dumka, Kiev (1979).

  28. 28.

    V. V. Panasyuk, A. E. Andreikiv, and S. E. Kovchik, Methods of Estimating Cracking Resistance for Constructional Materials [in Russian], Naukova Dumka, Kiev (1977).

  29. 29.

    V. M. Mirsalimov, Failure in Elastic and Elastoplastic Bodies Containing Cracks [in Russian], Elm, Baku (1984).

  30. 30.

    B. D. Annin and G. P. Cherepanov, An Elastoplastic Treatment [in Russian], Nauka, Sib. Otd., Novosibirsk (1983).

  31. 31.

    G. P. Cherepanov, Failure Mechanics for Composite Materials [in Russian], Nauka, Moscow (1983).

  32. 32.

    S. Ya. Yarema and G. S. Ivanitskaya, “Limiting equilibrium and the growth of oblique cracks: a survey of criteria,” Fiz.-Khim. Mekh. Mater., No. 1, 45–57 (1986). S. Ya. Yarema, “Correlation between parameters in Paris's Equation and the cyclic cracking resistance characteristics of materials,” Probl. Prochn., No. 9, 20–28 (1981).

  33. 33.

    L. T. Berezhnitskii, M. V. Delyavskii, and V. V. Panasyuk, Bending in Thin Plates Containing Defects of Crack Type [in Russian], Naukova Dumka, Kiev (1979).

  34. 34.

    A. A. Kaminskii, Viscoelastic Body Failure Mechanics [in Russian], Naukova Dumka, Kiev (1980).

  35. 35.

    V. V. Panasyuk, M. P. Savruk, and A. P. Dats'shin, Stress Distributions around Cracks in Plates and Shells [in Russian], Naukova Dumka, Kiev (1976).

  36. 36.

    M. P. Savruk, Two-Dimensional Elastic Problems for a Body Containing Cracks [in Russian], Naukova Dumka, Kiev (1981).

  37. 37.

    V. V. Panasyuk, A. E. Andreikiv, and M. M. Stadnik, “Three-dimensional problems in crack theory: a survey,” Fiz.-Khim. Mekh. Mater., No. 4, 39–55 (1979); No. 5, 45–65; No. 6, 17–26.

  38. 38

    G. S. Kit and M. G. Krivtsun, Planar Thermoelastic Problems for a Body Containing Cracks [in Russian], Naukova Dumka, Kiev (1983).

  39. 39.

    V. A. Osadchuk, State of Stress and Strain and Limiting Equilibrium in a Shell Containing Slits [in Russian], Naukova Dumka, Kiev (1985).

  40. 40.

    A. E. Andreikiv, Three-Dimensional Topics in Crack Theory [in Russian], Naukova Dumka, Kiev (1982).

  41. 41.

    L. T. Berezhnitskii, V. V. Panasyuk, and N. G. Stashchuk, Interaction between Rigid Inclusions and Cracks in a Deformable Body [in Russian], Nakova Dumka, Kiev (1983).

  42. 42.

    E. M. Morozov and G. P. Nikishkov, The Finite-Element Method in Failure Mechanics [in Russian], Nauka, Moscow (1980).

  43. 43.

    N. F. Morozov, Mathematical Aspects of Crack Theory [in Russian], Nauka, Moscow (1984).

  44. 44.

    V. V. Panasyuk, M. M. Stadnik, and V. P. Silovanyuk, Stress Concentrations in Three-Dimensional Bodies Containing Thin Inclusions [in Russian], Naukova Dumka, Kiev (1986).

  45. 45.

    G. P. Cherepanov, The Mechanics of Rock Failure during Drilling [in Russian], Nedra, Moscow (1987).

  46. 46.

    L. I. Slepyan, Crack Mechanics [in Russian], Sudostroenie, Leningrad (1981).

  47. 47.

    V. Z. Parton and V. G. Boriskovskii, Dynamic Failure Mechanics [in Russian], Mashinostroenie, Moscow (1985).

  48. 48.

    V. V. Panasyuk and M. P. Savruk, “Planar topics in thermal conduction and thermoelasticity in bodies containing cracks,” Usp. Mat. Nauk, No. 7, 75–115 (1984).

  49. 49.

    S. Kocanda, Fatigue Cracking in Metals [translated from the Polish and edited by S. Ya. Yarema], Metallurgiya, Moscow (1990).

  50. 50.

    Statements of Method: Strength Calculations and Tests in Engineering. Methods for Mechanical Tests on Materials. Determination of Failure Toughness Characteristics (Cracking Resistance) in Static Loading [in Russian], RD 50-260-81, Izd. Standartov, Moscow (1982). Statements of Method: Strength Calculations and Tests. Methods for Mechanical Tests on Metals. Determining Failure Toughness Characteristics (Cracking Resistance) in Dynamic Loading [in Russian], RD 50-344-82, Standartov, Moscow (1983).

  51. 51.

    Statements of Method: Strength Calculations and Tests. Methods for Mechanical Tests on Metals. Determining Crack Growth Resistance Characteristics (Cracking Resistance) in Cyclic Loading [in Russian], RD 50-345-82, Izd. Standartov, Moscow (1983). Strength Calculations and Tests in Engineering. Methods for Mechanical Tests on Composite Materials Containing Polymer Matrices. Method of Determining the Cracking Resistance Characteristics in Long-Term Static, Few-Cycle, and Fatigue Tests [in Russian], Recommendations on Methods, MR 99–84, Izd. VNIINMASh, Moscow (1984).

  52. 52.

    P. M. Vitvitskii, V. V. Panasyuk, and S. Ya. Yarema, “Plastic strain around a crack and failure criteria: survey,” Probl. Prochn., No. 2, 3–19 (1973).

  53. 53.

    M. Ya. Leonov, The Mechanics of Deformation and Failure [in Russian], Ilim, Frunze (1981).

  54. 54.

    D. S. Dugdale, “Yielding of steel sheets containing slits,” J. Mech. Phys. Solids,8, No. 2, 100–108 (1960).

  55. 55.

    A. A. Wells, “Critical tip opening displacement as fracture criterion,” Proc. Crack Propagation Symp., Vol. 1, Cranfield (1961), pp. 210–221.

  56. 56.

    M. Ya. Leonov, P. M. Vitvitskii, and S. Ya. Yarema, “A theoretical and experimental study on the elastoplastic strains in stretching a plate containing a slit,” in: Theory of Plates and Shells: Proc. Second All-Union Conference, L'vov, 15–21 September 1961 [in Russian], Izd. AN Ukr. SSR, Kiev (1962), pp. 196–199.

  57. 57.

    N. A. Makhutov, Strain Criteria for Failure and Strength Calculations on Constructional Elements [in Russian], Mashinostroenie, Moscow (1981).

  58. 58.

    V. V. Novozhilov, “A necessary and sufficient criterion for brittle strength,” Prikl. Mat. Mekh., No. 2, 212–222 (1969); V. V. Novozhilov, “Principles of the theory of equilibrium cracks in brittle bodies,” ibid., No. 7, 797–812 (1969).

  59. 59.

    G. P. Cherepanov, “General failure theory,” Fiz.-Khim. Mekh. Mater., No. 1, 36–44 (1986).

  60. 60.

    I. I. Vorovich and Yu. A. Ustimov, “The pressure of a plunger on a finite-thickness layer,” Prikl. Mat. Mekh., No. 3, 445–455 (1950).

  61. 61.

    D. V. Grilitskii and Ya. M. Kizyma, “Axisymmetric contact treatment for a transversely isotropic layer at rest on a rigid base,” Izv. Akad. Nauk SSSR, Mekh. Mash., No. 3, 134–140 (1962).

  62. 62.

    V. M. Aleksandrov, “Solution of some contact problems in elasticity theory,” Prikl. Mat. Mekh., No. 5, 970–972 (1963).

  63. 63.

    V. T. Koiter, “Solving some problems in elasticity theory by asymptotic methods,” in: Application of Function Theory in the Mechanics of Continuous Media [in Russian], Vol. 1, Nauka, Moscow (1965), pp. 15–31.

  64. 64.

    V. Z. Parton and P. I. Perlin, Integral Equations in the Theory of Elasticity [in Russian], Nauka, Moscow (1977).

  65. 65.

    A. E. Andreikiv, V. V. Panasyuk, and M. M. Stadnik, “Determining stress intensity factors for three-dimensional bodies containing cracks,” Probl. Prochn., No. 3, 45–50 (1974).

  66. 66.

    J. Balaš, J. Slàdek, and V. Slàdek, Analysis of Boundary Integral Equations by an Approximate Method [in Czech], VEDA, Bratislava (1985).

  67. 67.

    A. Ya. Krasovskii, Metal Brittleness at Low Temperatures [in Russian], Naukova Dumka, Kiev (1980).

  68. 68.

    N. I. Muskhelishviki, Some Basic Topics in the Mathematical Theory of Elasticity [in Russian], Nauka, Moscow (1966).

  69. 69.

    G. N. Savin, Stress Distributions around Holes [in Russian], Naukova Dumka, Kiev (1968).

  70. 70

    B. Noble, The Wiener-Hopf Method [Russian translation], Izd. AN SSSR, Moscow (1962).

  71. 71.

    M. Shiratori, T. Miyoshi, and K. Matsushita, The Computational Mechanics of Failure [Russian translation], Mir, Moscow (1986).

  72. 72.

    S. Craich and A. Starfield, Boundary-Element Methods in the Mechanics of Solids [Russian translation], Mir, Moscow (1987).

  73. 73.

    G. S. Kit and M. V. Khai, A Potential Method in Three-Dimensional Treatments in Thermoeleasticity for a Body Containing Cracks [in Russian], Naukova Dumka, Kiev (1989).

  74. 74.

    N. Wiener and E. Hopf, Über eine Klasse singularer Integral Gleichungen, Sitzungser. Akad. Wiss., Berlin (1931), pp. 24–28.

  75. 75.

    W. T. Koiter, “Approximate solution of Wiener/Hopf-type integral equation with applications,” Proc. Kon. Ned. Akad. wet.,57, No. 5, 558–579 (1954).

  76. 76.

    V. M. Aleksandrov, “Approximate solution of certain integral equations in elasticity theory and mathematical physics,” Prikl. Mat. Mekh., No. 6, 1117–1131 (1967).

  77. 77.

    Yu. I. Cherskii, “Two theorems on error estimation with some applications,” Dokl. Akad. Nauk SSSR, No. 2, 271–274 (1963).

  78. 78.

    V. A. Babeshko, “Integral convolution equations of the first kind on a system of segments arising in the theory of elasticity and mathematical physics,” Prikl. Mat. Mekh., No. 1, 88–89 (1971).

  79. 79.

    G. Ya. Popov, “Application of the Wiener—Hopf method and orthogonal polynomials to contact treatments,” in: Contact Treatments with Engineering Applications [in Russian], NII Mashinostroeniya, Moscow (1969), pp. 7–14.

  80. 80.

    Ya. S. Uflyand, Integral Transformations in Elasticity Theory [in Russian], Moscow (1967); Ya. S. Uflyand, “Some mixed problems in elasticity theory solved by means of paired integral equations,” in: Proc. Fourth All-Union Conference on Theoretical and Applied Mechanics, Kiev, 21–28 May 1976 [in Russian], Naukova Dumka, Kiev (1976), p. 108.

  81. 81.

    B. G. Grinchenko and A. F. Ulitko, “Stretching an elastic space weakened by a ring crack,” Prikl. Mekh., No. 10, 61–64 (1965); V. G. Grinchenko and A. F. Ulitko, “A contact problem in elastic theory for a system of ring plungers,” Mathematical Physics: Interdisciplinary Coll. [in Russian], Issue 5 (1968), pp. 54–57.

  82. 82.

    A. F. Ulitko, “Stretching an elastic space weakened by two circular cracks in the same plane,” in: Stress Concentration [in Russian], Naukova Dumka, Kiev (1968), Issue 2, pp. 201–208.

  83. 83.

    V. I. Mossakovskii, “The pressure of a circular plunger on an elastic half-space whose elastic modulus is a power function of depth,” Prikl. Mat. Mekh., No. 1, 123–125 (1958).

  84. 84.

    Yu. I. Cherskii, “Convolution-type equations,” Izv. Akad. Nauk SSSR, Mat., No. 3, 361–378 (1958).

  85. 85.

    V. M. Aleksandrov, “The solution to a class of paired equations,” Dokl. Akad. Nauk SSSR, No. 1, 55–58 (1973).

  86. 86.

    B. Noble, “The solution of Bessel function dual integral equations by multiplying factor method,” Proc. Cambridge Philos. Soc.,59, 351 (1965).

  87. 87.

    J. C. Cooke, “The solution of triple integral equations in operational form,” Quart. J. Mech. Appl. Math.,18, No. 1, 57–72 (1975).

  88. 88.

    A. G. Ugodchikov, M. I. Dlugach, and A. E. Stepanov, Solution of Boundary-Value Problems in the Planar Theory of Elasticity with Digital and Analog Computers [in Russian], Vysshaya Shkola, Moscow (1970).

  89. 89.

    A. Ya. Aleksandrov, “Solving a three-dimensional axisymmetric case with bulk forces or thermal stresses by means of analytic functions,” Izv. Akad. Nauk SSSR, Mekh. Mash., No. 4, 130–133 (1962); A. Ya. Aleksandrov and Yu. I. Solov'ev, Three-Dimensional Problems in Elasticity Theory [in Russian], Nauka, Moscow (1978).

  90. 90.

    A. Ya. Aleksandrov, “Solving mixed three-dimensional problems in elasticity theory for bodies of arbitrary shape,” in: Proc. Fourth All-Union Conference on Theoretical and Applied Mechanics, Kiev, 21–28 May 1976 [in Russian], Naukova Dumka, Kiev (1976), p. 77.

  91. 91.

    A. E. Andreikiv, V. V. Panasyuk, and M. M. Stadnik, “Failure in a brittle body weakened by a system of cracks,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 3, 54–58 (1975).

  92. 92.

    A. E. Andreikiv and M. M. Stadnik, “Propagation of a planar crack with a piecewise-smooth edge,” Prikl. Mekh., No. 10, 50–56 (1974).

  93. 93.

    A. E. Andreikiv, “Shear in an unbounded elastic space weakened by a planar crack,” Dokl. AN Ukr. SSR, Ser. A, No. 7, 601–603 (1977).

  94. 94.

    R. V. Gol'dshtein, I. S. Klein, and G. I. Eskin, A Variational-Difference Method of Solving Some Integral and Integrodifferential Equations in the Three-Dimensional Theory of Elasticity [in Russian], Preprint No. 33, Inst. Probl. Mekh. AN SSSR, Moscow (1973).

  95. 95.

    V. D. Kupradze, Potential Methods in Elasticity Theory [in Russian], Fizmatgiz, Moscow (1963).

  96. 96.

    V. D. Kupradze, T. G. Gegeliya, M. O. Basheleishvili, and T. V. Burchuladze, Three-Dimensional Treatments in the Mathematical Theory of Elasticity and Thermoeleasticity [in Russian], Nauka, Moscow (1976).

  97. 97.

    V. Z. Parton and L. I. Perlin, “Integral equations for basic three-dimensional and two-dimensional cases of elastic equilibrium,” in: Surveys of Science and Engineering, Mechanics of Deformable Solids, Issue 8 [in Russian], VINITI, Moscow (1975).

  98. 98.

    I. I. Vorovich, V. M. Aleksandrov, and V. A. Babeshko, Nonclassical Mixed Problems in Elasticity Theory [in Russian], Nauka, Moscow (1974).

  99. 99.

    J. N. Sneddon, “Integral transform method,” Mech. Fract.,1, 315–367 (1973).

  100. 100.

    E. S. Folias, “The stresses in a cracked spherical shell,” J. Math. Phys.,44, No. 2, 164–176 (1965).

  101. 101.

    E. S. Folias, “A circumferential crack in a pressurized cylindrical shells,” Int. J. Fract. Mech.,3, No. 1, 1–11 (1967).

  102. 102.

    S. Ya. Yarema and M. P. Savruk, “The state of strain in a cylindrical shell containing a longitudinal or transverse crack under symmetrical loading,” Dokl. AN URSR, Ser. A, No. 8, 720–724 (1967).

  103. 103.

    M. P. Savruk and S. Ya. Yarema, “The state of strain near a crack in a smooth shell,” in: Abstracts for the Third All-Union Conf. on Theoretical and Applied Mechanics [in Russian], Nauka, Moscow (1968).

  104. 104.

    V. T. Sapunov and E. M. Morozov, “Analysis of the state of strain in a spherical shell containing a crack,” in: Material Strength and Strain in Nonuniform Physical Fields, Vol. 2 [in Russian], Atomizdat, Moscow (1968), pp. 260–271.

  105. 105.

    S. Ya. Yarema and M. P. Savruk, “Stresses in a cylindrical shell containing an arbitrarily oriented crack,” Fiz.-Khim. Mekh. Mater., No. 3, 328–337 (1969).

  106. 106.

    S. Ya. Yarema and M. P. Savruk, “Effects of curvature on the stress state in a shell containing a crack,” Prikl. Mekh., No. 11, 32–40 (1970).

  107. 107.

    Ya. S. Pidstrigach and V. O. Osadchuk, “Identifying the state of strain in a closed cylindrical shell containing a crack,” Dokl. AN URSR, Ser. A, No. 1, 79–83 (1972).

  108. 108.

    V. A. Osadchuk and Ya. S. Podstrigach, “Determining the state of strain in a closed cylindrical shell or infinite plate containing cracks,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 3, 69–78 (1973).

  109. 109.

    M. P. Savruk, I. F. Soltis, and S. Ya. Yarema, “Determining the thermal stresses in a shell containing a crack,” Dokl. AN URSR, Ser. A, No. 10, 909–912 91974).

  110. 110.

    M. P. Savruk, I. F. Soltis, and S. Ya. Yarema, “Thermal stresses in a shell containing a crack,” in: Shell and Plate Theory [in Russian], Sudostroenie, Leningrad (1975), pp. 88–90.

  111. 111.

    M. P. Savruk and I. F. Soltis, “Thermal stresses around a crack in a double-curvature shell,” Prikl. Mekh., No. 10, 44–49 (1974).

  112. 112.

    M. P. Savruk and I. F. Soltis, “Thermal stresses in a cylindrical shell containing a crack,” ibid., No. 11, 112–116 (1974).

Download references

Additional information

Karpenko Physicomechanics Institute, Ukrainian Academy of Sciences, L'vov. Translated from Fiziko-Khimicheskaya Mekhanika Materialov, Vol. 29, No. 3, pp. 65–86, May–June, 1993.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Panasyuk, V.V. Eastern European developments in failure mechanics. Mater Sci 29, 249–265 (1993). https://doi.org/10.1007/BF00558967

Download citation

Keywords

  • Failure Mechanic
  • European Development