Journal of Materials Science

, Volume 26, Issue 13, pp 3553–3564 | Cite as

Sintering and characterization of Bi4Ti3O12 ceramics

  • C. Jovalekic
  • Lj. Atanasoska
  • V. Petrovic
  • M. M. Ristic


Polycrystalline ferroelectric Bi4Ti3O12 ceramics have been prepared by the method of reactive liquid phase sintering. The sintering behaviour of the Bi2O3-TiO2 composite was examined by plotting the isothermal densification curves. The results indicate that the starting oxides are involved in the reaction even at temperatures lower than or equal to 800°C, but the reaction advances at a very slow rate. Above solidus, the liquid phase promotes an extended reaction. Saturation observed in two densification curves, at 875 and 1100°C demonstrate that the reaction proceeds by two steps. A completion of the Bi4Ti3O12 formation occurs after 60 min of sintering at 1100°C. Optical micrographs of sintered bismuth titanate ceramics show randomly oriented ferroelectric grains separated by a paraelectric intergranular layer. The Bi4Ti3O12 crystallites exhibit a platelike morphology, similar in the appearance to mica, as evidenced by scanning electron micrographs. Isothermal annealing (750 to 950°C) does not affect the microstructure and electric properties of sintered bismuth titanate. The considerable value of dielectric permittivity and the appearance of hysteresis have been correlated to the presence of oxygen vacancies within the pseudotetragonal structure of Bi4Ti3O12. The oxygen vacancies are preferentially sited in the vicinity of bismuth ions as evidenced by X-ray photoemission data. XPS and AES measurements confirm that the surface concentration of cations comprising the Bi4Ti3O12 ceramics does not deviate from the nominal bulk composition.


Oxygen Vacancy Dielectric Permittivity Liquid Phase Sinter Isothermal Annealing Reactive Liquid Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Aurivillius,Arkiv Kemi 1 (1950) 499.Google Scholar
  2. 2.
    J. F. Dorrian, R. E. Newnham, D. K. Smith andM. I. Kay,Ferroelectrics 3 (1971) 17.Google Scholar
  3. 3.
    G. W. Taylor, S. A. Keneman, A. Miller andS. E. Cummins,ibid. 2 (1971) 11.Google Scholar
  4. 4.
    M. M. Hopkins andA. Miller,ibid. 1 (1970) 37.Google Scholar
  5. 5.
    A. Fouskova andL. E. Cross,J. Appl. Phys. 41 (1970) 2834.Google Scholar
  6. 6.
    G. W. Taylor,Ferroelectrics 1 (1970) 79.Google Scholar
  7. 7.
    S. Ehara, K. Muramatsu, M. Shimazu, J. Tanaka, M. Tsukioka, Y. Mori, T. Hattori andH. Tamura,Jpn J. Appl. Phys. 20 (1981) 877.Google Scholar
  8. 8.
    E. C. Subbarao,J. Phys. Chem. Solids 23 (1962) 665.Google Scholar
  9. 9.
    E. I. Speranskaya, I. S. Rez, L. V. Kozlova, V. M. Skorikov andV. I. Slovov,Neorganicheskie Materiali 1 (1965) 232.Google Scholar
  10. 10.
    E. V. Sinjakov, E. F. Dudnik, V. M. Duda, V. A. Podolski andM. A. Gorfunkel,Fizika tverdogo tela 16 (1974) 1515.Google Scholar
  11. 11.
    D. Briggs andM. P. Seah (Eds) “Practical Surface Analysis By Auger and X-Ray Photoelectron Spectroscopy” (John Wiley, New York, 1983).Google Scholar
  12. 12.
    T. Takenaka andK. Sakata,Jpn J. Appl. Phys. 19 (1980) 31.Google Scholar
  13. 13.
    C. B. Sawyer andC. H. Tower,Phys. Rev. 35 (1930) 269.Google Scholar
  14. 14.
    C. D. Wagner, W. M. Riggs, L. E. Davis andJ. F. Moulder in G. E. Muilenberg (Ed.), “Handbook of X-Ray Photoelectron Spectroscopy” (Perkin-Elmer, Physical Electronic Division, Eden Prairie, MN, 1978).Google Scholar
  15. 15.
    L. E. Davis, N. C. MacDonald, P. W. Palmberg, G. E. Riach, R. E. Weber, “Handbook of Auger Electron Spectroscopy” (PHI, Eden Prairie, MN, 1976).Google Scholar
  16. 16.
    V. S. Dharmadhikari, S. R. Sainkar, S. Badrinarayan andA. Goswami,J. Electron. Spectrosc. Relat. Phenom. 25 (1982) 181–189.Google Scholar
  17. 17.
    V. S. Dharmadhikari andA. Goswami,J. Vac. Sci. Technol. A1 (1983) 383–387.Google Scholar
  18. 18.
    G. B. Hoflund, H.-L. Yin, A. L. Grogan, Jr., D. A. Asbury, H. Yoneyama, O. Ikeda andH. Tamura,Langmuir 4 (1988) 346.Google Scholar
  19. 19.
    J. M. McKay andV. E. Henrich,Surf. Sci. 137 (1984) 463.Google Scholar
  20. 20.
    G. Rocker andW. Gopel,ibid. 181 (1987) 530.Google Scholar
  21. 21.
    O. Kubaschewski andC. B. Alcock, “Metallurgical Thermochemistry”, 5th Edn (Pergamon, Oxford, 1979).Google Scholar
  22. 22.
    B. Folkesson andP. Sundberg,Spectrosc. Lett. 20 (1987) 193–200.Google Scholar
  23. 23.
    J. H. Scofield,J. Electron. Spectrosc. Relat. Phenom. 8 (1976) 129–137.Google Scholar
  24. 24.
    S. E. Cummins andL. E. Cross,J. Appl. Phys. 39 (1968) 2268.Google Scholar
  25. 25.
    T. Kimura, T. Kanazawa andT. Yamaguchi,J. Amer Ceram. Soc. 66 (1983) 597.Google Scholar
  26. 26.
    S. Ikegami andI. Ueda,Jpn J. Appl. Phys. 13 (1974) 1572.Google Scholar
  27. 27.
    V. A. Podolski, E. F. Dudnik andT. M. Stolpakova,Izv. Akad. Nauk USSR 39 (1975) 1041.Google Scholar
  28. 28.
    H. Watanabe, T. Kimura andT. Yamaguchi,J. Amer. Ceram. Soc. 72 (1989) 289.Google Scholar
  29. 29.
    W. Xiaoli andY. Xi,Jpn J. Appl. Phys. 24 (Suppl. 24-2) (1985) 1033.Google Scholar
  30. 30.
    J. Zhi-Cheng, An Li-Dun andY. Yuan-Gen,Appl. Surf. Sci. 24 (1985) 134.Google Scholar
  31. 31.
    A. A. Zavyalova andR. M. Imamov,Sov. Phys.- Crystallogr. 13 (1968) 37 (Engl. transl.).Google Scholar
  32. 32.
    E. M. Levin andR. S. Roth,J. Res. NBS 68A (1964) 189.Google Scholar
  33. 33.
    T. N. Taylor, C. T. Campbell, J. W. Rogers, Jr., W. P. Ellis andJ. M. White,Surf. Sci. 134 (1983) 529–546.Google Scholar
  34. 34.
    E. C. Subbarao,Phys. Rev. 122 (1961) 804.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1991

Authors and Affiliations

  • C. Jovalekic
    • 1
  • Lj. Atanasoska
    • 2
  • V. Petrovic
    • 3
  • M. M. Ristic
    • 4
  1. 1.Center for Multidisciplinary StudyUniversity of BelgradeBelgradeYugoslavia
  2. 2.Institute of Technical Sciences of Serbian Academy of Sciences and ArtsBelgradeYugoslavia
  3. 3.The Faculty of Pedagogy and TechniquesCacakYugoslavia
  4. 4.Committee for Physical ChemistrySerbian Academy of Sciences and ArtsBelgradeYugoslavia

Personalised recommendations