Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Creep behaviour of Cu-30% Zn at intermediate temaperatures

  • 50 Accesses

  • 11 Citations

Abstract

The creep properties of single-phase Cu-30% Zn alpha brass were investigated in the intermediate temperature range 573–823 K (0.48–0.70T m, whereT m is the absolute melting point). Inverse, linear, and sigmoidal primary creep transients were usually observed above 573 K under stresses resulting in minimum creep rates between 10−7 and 2×10−4s−1, while normal primary creep occurred under all other conditions. The creep stress exponent decreased from about 5.4 at 573 K to about 4.1 above 623 K, and the activation energy for creep varied between 170 and 180 kJ mol−1. A detailed analysis of the data, as well as a review of the literature, suggests that no clearly defined class M to class A to class M transition exists in this alloy, although the characteristics of both class A and class M behaviour are observed under nominally similar stresses and temperatures. It is concluded that Cu-30% Zn does not conform to the normally accepted characterization of class A or class M solid solution alloys.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    P. Yavari, F. A. Mohamed andT. G. Langdon,Acta Metall. 29 (1981) 1495.

  2. 2.

    T. G. Langdon, in “Strength of Metals and Alloys (ICSMA 6)”, edited by R. C. Gifkins (Pergamon Press, Oxford, 1983) p. 1105.

  3. 3.

    H. Oikawa andT. G. Langdon, in “Creep Behaviour of Crystalline Solids”, Vol. 3, “Progress in Creep and Fracture”, edited by B. Wilshire and R. W. Evans, (Pineridge Press, Swansea, 1985) p. 33.

  4. 4.

    H. Oikawa, in “Creep and Fracture of Engineering Materials and Structures”, edited by B. Wilshire and R. W. Evans (Pineridge Press, Swansea, 1987) p. 99.

  5. 5.

    W. J. Evans andB. Wilshire,Metall. Trans. 1 (1970) 2133.

  6. 6.

    Idem, Scripta Metall. 8 (1974) 497.

  7. 7.

    T. Hasegawa, Y. Ikeuchi andS. Karashima,Met. Sci. J. 6 (1972) 78.

  8. 8.

    H. Oikawa, D. Mizukoshi andS. Karashima,Metall. Trans. A9 (1978) 1281.

  9. 9.

    H. Oikawa andS. Nanba,Trans. Iron Steel Inst. Jpn 27 (1987) 402.

  10. 10.

    S. Nanba andH. Oikawa,Mater. Sci. Engng 101 (1988) 31.

  11. 11.

    P. Feltham andG. J. Copley,Phil. Mag. 5 (1960) 649.

  12. 12.

    R. M. Bonesteel andO. D. Sherby,Acta Metall. 14 (1966) 385.

  13. 13.

    J. Hedworth andG. Pollard,Metal Sci. J. 5 (1971) 41.

  14. 14.

    T. Hostinský andJ. Cadek,Phil. Mag. 31 (1975) 1177.

  15. 15.

    G. Nelmes andB. Wilshire,Scripta Metall. 10 (1976) 697.

  16. 16.

    B. Hidalgo-Prada andA. K. Mukherjee, unpublished research (1983).

  17. 17.

    O. D. Sherby andP. M. Burke,Prog. Mater. Sci. 13 (1967) 325.

  18. 18.

    L. E. Svensson andG. L. Dunlop,Metal Sci. 16 (1982) 57.

  19. 19.

    H. Oikawa,Phil. Mag. 37 (1978) 707.

  20. 20.

    H. Oikawa andK. Sugawara,Scripta Metall. 12 (1978) 85.

  21. 21.

    T. G. Langdon andP. Yavari, in “Creep and Fracture of Engineering Materials and Structures”, edited by B. Wilshire and D. R. J. Owen (Pineridge Press, Swansea, 1981) p. 71.

  22. 22.

    S. V. Raj andT. G. Langdon,Acta Metall. 37 (1989) 843.

  23. 23.

    S. V. Raj,J. Mater. Sci. 24 (1989) 3196.

  24. 24.

    M. Pahutová, J. Cadek andP. Rys,Scripta Metall. 11 (1977) 1061.

  25. 25.

    S. V. Raj,ibid. 20 (1986) 1751.

  26. 26.

    Idem, J. Mater. Sci. Lett. 7 (1988) 1342.

  27. 27.

    C. R. Barrett, J. L. Lytton andO. D. Sherby,Trans. AIME 239 (1967) 170.

  28. 28.

    H. Oikawa andA. Yasuda,Metal Sci. 13 (1979) 551.

  29. 29.

    H. Oikawa, M. Saeki andS. Karashima,Trans, Jpn Inst. Metals 21 (1980) 301.

  30. 30.

    R. L. Coble,J. Appl. Phys. 34 (1963) 1679.

  31. 31.

    T. G. Langdon andF. A. Mohamed,Mater. Sci. Engng 32 (1978) 103.

  32. 32.

    F. R. N. Nabarro, in “Report of a Conference on Strength of Solids” (The Phyical Society, London, 1948) p. 75.

  33. 33.

    C. Herring,J. Appl. Phys. 21 (1950) 437.

  34. 34.

    S. V. Raj,J. Mater. Sci., in press.

  35. 35.

    F. A. M'Ohamed,Mater. Sci. Engng 61 (1983) 149.

  36. 36.

    T. B. Massalski andJ. E. Kittl,J. Austral. Inst. Metals 8 (1963) 91.

  37. 37.

    H. W. King,J. Mater. Sci. 1 (1966) 79.

  38. 38.

    R. Hultgren, R. L. Orr, P. D. Anderson andK. Kelley, in “Selected Values of Thermodynamic Properties of Metals and Alloys” (Wiley, New York, 1963), p. 718.

  39. 39.

    R. C. Weast (Ed.), “CRC Handbook of Chemistry and Physics”, (CRC Press, Boca Raton, Florida, 1981) p. F-94.

  40. 40.

    R. Feder, A. S. Nowick andD. B. Rosenblatt,J. Appl. Phys. 29 (1958) 984.

  41. 41.

    P. C. J. Gallagher,Metall. Trans. 1 (1970) 2429.

  42. 42.

    L. E. Murr, in “Interfacial Phenomena in Metals and Alloys” (Addison-Wesley, Reading, MA, 1975) p. 148.

  43. 43.

    T. S. Kê,J. Appl. Phys. 19 (1948) 285.

  44. 44.

    P. Yavari andT. G. Langdon,Acta Metall. 30 (1982) 2181.

  45. 45.

    C. Kittel, in “Introduction to Solid State Physics”, 5th Edn (Wiley, New York, 1976) p. 100.

  46. 46.

    W. D. Nix andB. Ilschner, in “Strength of Metals and Alloys (ICSMA 5)”, edited by P. Hansen, V. Gerold and G. Kostorz (Pergamon Press, Oxford, 1980) p. 1503.

  47. 47.

    R. Resnick andR. W. Balluffi,Trans. AIME 203 (1955) 1004.

  48. 48.

    J. Hino, C. Tomizuka andC. Wert,Acta Metall. 5 (1957) 41.

  49. 49.

    K. J. Anusavice andR. T. Dehoff,Metall. Trans. 30 (1972) 1279.

  50. 50.

    J. C. Fisher, J. H. Hollomon andD. Turnbull,Trans. AIME 175 (1948) 202.

  51. 51.

    F. A. Mohamed andT. G. Langdon,Acta Metall. 22 (1974) 779.

  52. 52.

    R. Fuentes-Samaniego, W. D. Nix andG. M. Pound,Phil. Mag. A42 (1980) 591.

  53. 53.

    R. Fuentes-Samaniego andW. D. Nix,Scripta Metall. 15 (1981) 15.

  54. 54.

    R. Fuentes-Samaniego, W. D. Nix andG. M. Pound,Acta Metall. 29 (1981) 487.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Raj, S.V. Creep behaviour of Cu-30% Zn at intermediate temaperatures. J Mater Sci 26, 3533–3543 (1991). https://doi.org/10.1007/BF00557142

Download citation

Keywords

  • Activation Energy
  • Solid Solution
  • Melting Point
  • Creep Rate
  • Creep Behaviour