Advertisement

Biochemical Genetics

, Volume 32, Issue 7–8, pp 301–314 | Cite as

Alterations in flightin phosphorylation inDrosophila flight muscles are associated with myofibrillar defects engendered by actin and myosin heavy-chain mutant alleles

  • Jim O. Vigoreaux
Article

Abstract

Flightin is a 20-kD myofibrillar protein found in the stretch-activated flight muscles ofDrosophila melanogaster. Nine of the eleven isoelectric variants of flightin are generatedin vivo by multiple phosphorylations. The accumulation of these isoelectric variants is affected differently by mutations that eliminate thick filaments or thin filaments. Mutations in the myosin heavy-chain gene that prevent thick filament assembly block accumulation of all flightin variants except N1, the unphosphorylated precursor, which is present at much reduced levels. Mutations in the flight muscle-specific actin gene that block actin synthesis and prevent thin filament assembly disrupt the temporal regulation of flightin phosphorylation, resulting in premature phosphorylation and premature accumulation of flightin phosphovariants. Cellular fractionation of fibers that are devoid of thin filaments show that flightin remains associated with the thick filamentrich cytomatrix. These results suggest that flightin is a structural component of the thick filaments whose regulated phosphorylation is dependent upon the presence of thin filaments.

Key words

flightin Drosophila insect flight muscle phosphoprotein actin myosin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bainbridge, S. P., and Bownes, M. (1981). Staging the metamorphosis of Drosophila melanogaster.J. Embryol. Exp. Morphol. 6657.Google Scholar
  2. Beall, C. J., Sepanski, M. A., and Fyrberg, E. A. (1989). Genetic dissection of Drosophila myofibril formation: Effects of actin and myosin heavy chain null alleles.Genes Dev. 3131.Google Scholar
  3. Bernstein, S. I., O'Donnell, P. T., and Cripps, R. M. (1993). Molecular genetic analysis of muscle development, structure and function inDrosophila.Int. Rev. Cytol. 14363.Google Scholar
  4. Chun, M., and Falkenthal, S. (1988). Ifm(2)2 is a myosin heavy chain allele that disrupts myofibrillar assembly only in the indirect flight muscle of Drosophila melanogaster.J. Cell Biol. 1072613.Google Scholar
  5. Ciechanover, A., and Gonen, H. (1990). The ubiquitin-mediated proteolytic pathway: Enzymology and mechanisms of recognition of the proteolytic substrates.Semin. Cell Biol. 1415.Google Scholar
  6. Fuller, M. T., Regan, C. L., Green, L. L., Robertson, B., Deuring, R., and Hays, T. S. (1989). Interacting genes identify interacting proteins involved in microtubule function in Drosophila.Cell Motil. Cytoskel. 14128.Google Scholar
  7. Fyrberg, E., and Beall, C. (1990). Genetic approaches to myofibril form and function in Drosophila.TIG 6126.Google Scholar
  8. Hiromi, Y., and Hotta, Y. (1985). Actin gene mutations in Drosophila: Heat shock activation in the indirect flight muscles.EMBO J. 41681.Google Scholar
  9. Hubbard, M. J., and Cohen, P. (1993). On target with a new mechanism for the regulation of protein phosphorylation.TIBS 18172.Google Scholar
  10. Mahaffey, J. W., Coutu, M. D., Fyrberg, E. A., and Inwood, W. (1985). The flightless Drosophila mutant raised has two distinct genetic lesions affecting accumulation of myofibrillar proteins in flight muscles.Cell 40101.Google Scholar
  11. Mogami, K., and Hotta, Y. (1981). Isolation of Drosophila flightless mutations which affect myofibrillar proteins of indirect flight muscle.Mol. Gen. Genet. 183409.Google Scholar
  12. O'Farrell, P. H. (1975). High resolution two-dimensional electrophoresis of proteins.J. Biol. Chem. 2504007.Google Scholar
  13. Okamoto, H., Hiromi, Y., Ishikawa, E., Yamada, T., Isoda, K., Maekawa, H., and Hotta, Y. (1986). Molecular characterization of mutant actin genes which induce heat-shock proteins inDrosophila flight muscles.EMBO J. 5589.Google Scholar
  14. Reedy, M. C., and Beall, C. (1993). Ultrastructure of developing flight muscle in Drosophila. I. Assembly of myofibrils.Dev. Biol. 160443.Google Scholar
  15. Saide, J. D., Chin-Bow, S., Hogan-Sheldon, J., Busquets-Turner, L., Vigoreaux, J. O., Valgeirsdottir, K., and Pardue, M. L. (1989). Characterization of components of Z-bands in the fibrillar flight muscle of Drosophila melanogaster.J. Cell Biol. 1092157.Google Scholar
  16. Squire, J. M. (1986).Muscle: Design, Diversity, and Disease Benjamin/Cummings, Menlo Park, CA.Google Scholar
  17. Squire, J. M. (1992). Muscle filament lattices and stretch-activation: The match-mismatch model reassessed.J. Muscle Res. Cell Motil. 13183.Google Scholar
  18. Squire, J. M., Luther, P. K., and Morris, E. P. (1990). Organisation and properties of the striated muscle sarcomere. In Squire, J. M. (ed.),Molecular Mechanisms in Muscular Contraction CRC Press, Boca Raton, FL, pp. 1–48.Google Scholar
  19. Thorson, J., and White, D. C. S. (1969). Distributed representations for actin-myosin interaction in the oscillatory contraction of muscle.Biophys. J. 9360.Google Scholar
  20. Thorson, J., and White, D. C. S. (1983). Role of cross-bridge distortion in the small-signal mechanical dynamics of insect and rabbit skeletal muscle.J. Physiol. (Great Br.) 34359.Google Scholar
  21. Vigoreaux, J. O., and Perry, L. M. (1994). Multiple isoelectric variants of flightin in Drosophila stretch-activated muscles are generated by temporally regulated phosphorylations.J. Muscle Res. Cell Motil. (in press).Google Scholar
  22. Vigoreaux, J. O., Saide, J. D., and Pardue, M. L. (1991). Structurally different Drosophila striated muscles utilize distinct variants of Z band-associated proteins.J. Muscle Res. Cell Motil. 12340.Google Scholar
  23. Vigoreaux, J. O., Saide, J. D., Valgeirsdottir, K., and Pardue, M. L. (1993). Flightin, a novel myofibrillar protein of Drosophila stretch-activated muscles.J. Cell Biol. 121587.Google Scholar
  24. Warmke, J., Yamakawa, M., Molloy, J., Falkenthal, S., and Maughan, D. (1992). Myosin light chain-2 mutation affects flight, wing beat frequency and indirect flight muscle contraction kinetics inDrosophila.J. Cell Biol. 1191523.Google Scholar
  25. Wray, J. S. (1979). Filament geometry and the activation of insect flight muscles.Nature 280325.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Jim O. Vigoreaux
    • 1
  1. 1.Department of ZoologyUniversity of VermontBurlington

Personalised recommendations