Biochemical Genetics

, Volume 26, Issue 1–2, pp 89–103 | Cite as

X-linked glucose-6-phosphate dehydrogenase deficiency inMus musculus

  • WaIter Pretsch
  • Daniel J. Charles
  • Siegbert Merkle


A mouse with X-linked glucose-6-phosphate dehydrogenase (G6PD) deficiency has been recovered in offspring of 1-ethyl-1-nitrosourea-treated male mice. The activity alteration was detected in blood but can also be observed in other tissue extracts. Hemizygous, heterozygous, and homozygous mutants have, respectively, about 15, 60, and 15% G6PD remaining activity in the blood as compared to the wild type. Erythrocyte indices did not show differences between mutants and wild types. The mutation does not affect the electrophoretic migration, the isoelectric point, or the thermal stability. Kinetic properties, such as theKm for glucose-6-phosphate or for NADP and the relative utilization of substrate analogues, showed no differences between wild types and mutants with the exception of the relative utilization of deamino-NADP which was significantly lower in mutants. This is presently the only animal model for X-linked G6PD deficiency in humans.

Key words

glucose-6-phosphate dehydrogenase mouse enzyme activity mutant erythrocyte X chromosome animal model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bergmeyer, H. U., Bernt, E., Gawehn, K., and Michal, G. (1974). Handling of biochemical reagents and samples. In Bergmeyer, H. U. (ed.),Methods of Enzymatic Analysis, Vol. 1 Verlag Chemie, Weinheim, pp. 158–179.Google Scholar
  2. Beutler, E. (1983). Selectivity of proteases as a basis for tissue distribution of enzymes in hereditary deficiencies.Proc. Natl. Acad. Sci. USA 803767.Google Scholar
  3. Beutler, E. Mathai, C. K., and Smith, J. E. (1968). Biochemical variants of glucose-6-phosphate dehydrogenase giving rise to congenital nonspherocytic hemolytic disease.Blood 31131.Google Scholar
  4. Bienzle, U., Lucas, A. O., Ayeni, O., and Luzzatto, L. (1972). Glucose-6-phosphate dehydrogenase and malaria. Greater resistance of females heterozygous for enzyme deficiency and of males with non-deficient variant.Lancet 1107.Google Scholar
  5. Boyer, S. H., Fainer, D. C., and Naughton, M. A. (1963). Myoglobin: Inherited structural variation in man.Science 1401228.Google Scholar
  6. Charles, D. J., and Pretsch, W. (1981). A mutation affecting the lactate dehydrogenase locusLdh-1 in the mouse. I. Genetical and electrophoretical characterization.Biochem. Genet. 19301.Google Scholar
  7. Charles, D. J., and Pretsch, W. (1984a). A mouse mutant deficient in erythrocyte glucose-6-phosphate dehydrogenase after paternal ethylnitrosourea treatment.Genetics 107s19.Google Scholar
  8. Charles, D. J., and Pretsch, W. (1984b). A new pyruvate kinase mutation with hyperactivity in the mouse.Biochem. Genet. 221103.Google Scholar
  9. Charles, D. J., and Pretsch, W. (1987). Linear dose-response relationship of erythrocyte enzyme-activity mutations in offspring of ethylnitrosourea-treated mice.Mutat. Res. 17681.Google Scholar
  10. Dacie, J. V., and Lewis, S. M. (1984).Practical Haematology 6th ed., Churchill Livingstone, Edinburgh, pp. 152–178.Google Scholar
  11. Ehling, U. H., Charles, D. J., Favor, J., Graw, J., Kratochvilova, J., Neuhäuser-Klaus, A., and Pretsch, W. (1985). Induction of gene mutations in mice: The multiple endpoint approach.Mutat. Res. 150393.Google Scholar
  12. Epstein, C. J. (1969). Mammalian oocytes: X chromosome activity.Science 1631078.Google Scholar
  13. Fehrnström, H., and Moberg, U. (1977). SDS and conventional polyacrylamide gel electrophoresis with LKB 2117 Multiphor.LKB Appl. Note 306.Google Scholar
  14. Hutton, J. J. (1971). Genetic regulation of glucose 6-phosphate dehydrogenase activity in the inbred mouse.Biochem. Genet. 5315.Google Scholar
  15. Kirkman, H. N. (1971). Glucose-6-phosphate dehydrogenase.Adv. Hum. Genet. 21.Google Scholar
  16. Kirkman, H. N., and Hendrickson, E. M. (1963). Sex-linked electrophoretic difference in glucose-6-phosphate dehydrogenase.Am. J. Hum. Genet. 15241.Google Scholar
  17. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951). Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193265.Google Scholar
  18. Luzzatto, L., and Battistuzzi, G. (1985). Glucose-6-phosphate dehydrogenase.Adv. Hum. Genet. 14217.Google Scholar
  19. Luzzatto, L., Usanga, E. A., and Reddy, S. (1969). Glucose-6-phosphate dehydrogenase deficient red cells: Resistance to infection by malarial parasites.Science 164839.Google Scholar
  20. Marks, P. A., and Gross, R. T. (1959). Erythrocyte glucose-6-phosphate dehydrogenase deficiency: Evidence of differences between Negroes and Caucasians with respect to this genetically determined trait.J. Clin. Invest. 382253.Google Scholar
  21. Porter, I. H., Boyer, S. H., Watson-Williams, E. J., Adam, A., Szeinberg, A., and Siniscalco, M. (1964). Variation of glucose-6-phosphate dehydrogenase in different populations.Lancet 1895.Google Scholar
  22. Radola, B. J. (1980). Ultrathin-layer isoelectric focusing in 50–100 µm polyacrylamide gels on silanized glass plates or polyester films.Electrophoresis 143.Google Scholar
  23. Sansone, G., Rasore-Quartino, A., and Veneziano, G. (1964). Two red-cell populations in the human female heterozygous for g-6-pd deficiency.Lancet 1329.Google Scholar
  24. Smith, J. E., Ryer, K., and Wallace, L. (1976). Glucose-6-phosphate dehydrogenase deficiency in a dog.Enzyme 21379.Google Scholar
  25. Streuli, R. A., Kanofsky, J. R., Gunn, R. B., and Yachnin, S. (1981). Diminished osmotic fragility of human erythrocytes following the membrane insertion of oxygenated sterol compounds.Blood 58317.Google Scholar
  26. Werner, W., Rey, H.-G., and Wielinger, H. (1970). Über die Eigenschaften eines neuen Chromogens für die Blutzuckerbestimmung nach der GOD/POD-Methode.Z. Anal. Chem. 252224.Google Scholar
  27. Werth, G., and Müller, G. (1967). Vererbbarer Glucose-6-phosphatdehydrogenasemangel in den Erythrocyten von Ratten.Klin. Wschr. 45265.Google Scholar
  28. WHO Scientific Group (1967). Standardization of procedures for the study of glucose-6-phosphate dehydrogenase.WHO Techn. Rep. Ser. 366.Google Scholar
  29. WHO Working Group (1982). Hereditary anaemias: Genetic basis, clinical features, diagnosis, and treatment.Bull. WHO 60643.Google Scholar
  30. Winter, A., Ek, K., and Andersson, U.-B. (1977). Analytical electrofocusing in thin layers of polyacrylamide gels.LKB Appl. Note 250.Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • WaIter Pretsch
    • 1
  • Daniel J. Charles
    • 1
  • Siegbert Merkle
    • 1
  1. 1.Institut für Säugetiergenetik, Gesellschaft für Strahlen- und UmweltforschungNeuherbergGermany

Personalised recommendations