Advertisement

Journal of Materials Science

, Volume 20, Issue 5, pp 1873–1882 | Cite as

Indentation fracture of WC-Co cermets

  • D. K. Shetty
  • I. G. Wright
  • P. N. Mincer
  • A. H. Clauer
Papers

Abstract

Indentation fracture of a series of well-characterized WC-Co cermets was studied with a Vickers diamond pyramid indenter. The resulting crack length-indentation load data were analysed in terms of relations characteristic of radial (Palmqvist) and fully developed radial/median (half-penny) crack geometries. The radial crack model gave a better fit to the data on all the alloys studied. Crack shapes determined by repeated surface polishing confirmed the radial nature of the cracks. An indentation fracture mechanics analysis based on the assumption of a wedge-loaded crack is shown to be consistent with the observed linear relation between the radial crack length and the indentation load. The analysis also predicts a simple relation among the fracture toughness (Klc), the Palmqvist toughness (W) and the hardness (H) of the WC-Co alloys.

Keywords

Fracture Toughness Pyramid Crack Length Crack Model Radial Crack 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Larsen-Basse,J. Metals 35 (11) (1983) 35.Google Scholar
  2. 2.
    E. A. Almond, in Proceedings of the International Conference on The Science of Hard Materials, Jackson, Wyoming, August 1981, edited by R. K. Viswandham, D. J. Rowcliffe, and J. Gurland (Plenum Press, New York, 1983) p. 517.Google Scholar
  3. 3.
    H. C. Lee andJ. Gurland,Mater. Sci. Eng. 33 (1978) 125.Google Scholar
  4. 4.
    J. R. Pickens andJ. Gurland,ibid. 33 (1978) 135.Google Scholar
  5. 5.
    I. G. Wright, D. K. Shetty andA. H. Clauer, in Proceedings of the 6th International Conference on Erosion by Liquid and Solid Impact, Cambridge, UK September 1983, edited by J. E. Field and N. S. Corney (Cavendish Laboratory, University of Cambridge, 1983) p. 63–1.Google Scholar
  6. 6.
    D. K. Shetty, I. G. Wright andJ. T. Stropki,Trans. ASLE 28 (1985) 5.Google Scholar
  7. 7.
    A. H. Clauer, I. G. Wright andD. K. Shetty, in Proceedings of the International Symposium on Metallography and Corrosion, Calgary, Canada, May 1983 to be published.Google Scholar
  8. 8.
    S. Palmqvist,Jernkontorets Ann. 141 (1957) 300.Google Scholar
  9. 9.
    Idem, Arch. Eisenhuettenw. 33 (1962) 629.Google Scholar
  10. 10.
    W. Dawihl andG. Altmeyer,Z. Metallkde 55 (1964) 231.Google Scholar
  11. 11.
    H. E. Exner,Trans. AIME 245 (1969) 677.Google Scholar
  12. 12.
    R. K. Viswanadham andJ. D. Venables,Met. Trans. 8A (1977) 187.Google Scholar
  13. 13.
    I. M. Ogilvy, C. M. Perrott andJ. W. Suiter,Wear 43 (1977) 239.Google Scholar
  14. 14.
    C. M. Perrott,ibid. 47 (1978) 81.Google Scholar
  15. 15.
    Idem, ibid. 45 (1977) 293.Google Scholar
  16. 16.
    “Fracture Toughness Testing and Its Applications”, ASTM Special Technical Publication No. 381 (American Society for Testing and Materials, 1965).Google Scholar
  17. 17.
    C. T. Peters,J. Mater. Sci. 14 (1979) 1619.Google Scholar
  18. 18.
    E. L. Exner, J. R. Pickens andJ. Gurland,Met. Trans. 9A (1978) 736.Google Scholar
  19. 19.
    S. S. Chiang, D. B. Marshall andA. G. Evans,J. Appl. Phys. 53 (1982) 298.Google Scholar
  20. 20.
    K. Niihara,J. Mater. Sci. Lett. 2 (1983) 221.Google Scholar
  21. 21.
    R. Warren andH. Matzke, in the Proceedings of the International Conference on The Science of Hard Materials, Jackson, Wyoming, August, (1981), edited by R. K. Viswanadham, D. J. Rowcliffe, and J. Gurland (Plenum, New York, 1983) p. 563.Google Scholar
  22. 22.
    J. Lankford,J. Mater. Sci. Lett. 1 (1982) 493.Google Scholar
  23. 23.
    K. Niihara, R. Morena andD. P. H. Hasselman,ibid. 1 (1982) 13.Google Scholar
  24. 24.
    B. R. Lawn, A. G. Evans andD. B. Marshall,J. Amer. Ceram. Soc. 63 (9–10) (1980) 574.Google Scholar
  25. 25.
    P. O. Snell andE. Parnama, in “Modern Developments in Powder Metallurgy”, edited by H. H. Hausner and W. E. Smith (American Powder Metallurgy Institute, Princeton, New Jersey, 1974) p. 664.Google Scholar
  26. 26.
    R. A. Cutler et al., Terra Tek Engineering, Final Report, NSF Grant No. DAR-7713273, July (1982).Google Scholar
  27. 27.
    G. I. Barenblatt,Adv. Appl. Mech. 7 (1962) 56.Google Scholar
  28. 28.
    J. Tweed,J. Elasticity 1 (1971) 29.Google Scholar
  29. 29.
    J. C. Newman Jr, in “Part-Through Crack Fatigue Life Prediction”, ASTM STP 687, edited by J. B. Chang (American Society for Testing and Materials, 1979) p. 16.Google Scholar
  30. 30.
    D. K. Shetty, A. R. Rosenfield, W. H. Duckworth andA. V. Virkar,J. Amer. Ceram. Soc. 67 (1984) C201.Google Scholar

Copyright information

© Chapman and Hall Ltd 1985

Authors and Affiliations

  • D. K. Shetty
    • 1
  • I. G. Wright
    • 1
  • P. N. Mincer
    • 1
  • A. H. Clauer
    • 1
  1. 1.Battelle Columbus LaboratoriesColumbusUSA

Personalised recommendations