Journal of Materials Science

, Volume 9, Issue 1, pp 81–99 | Cite as

Cyclic deformation and fracture of polymers

  • S. Rabinowitz
  • P. Beardmore


The cyclic stress-strain behaviour of a wide variety of rigid polymers has been studied. Three classes of fatigue response can be defined, each class displaying a characteristic evolutionary pattern in the stress-strain relation as deformation proceeds from the initial fatigue cycle to fatigue-crack propagation. Ductile polymers undergo a marked decrease in deformation resistance prior to crack formation; the detailed mechanism by which this “softening” develops can be related to the material microstructure and thermomechanical history. Amorphous polymers with a moderate degree of ductility soften slightly; in these materials crazing plays a dominant role in both the cyclic stress-strain response and the structural fatigue resistance. Brittle and nearly-brittle polymers are essentially stable in cyclic deformation; the fatigue resistance of these materials is very sensitive to strain amplitude in cyclic deformation.


Fatigue Fatigue Resistance Fatigue Cycle Cyclic Deformation Deformation Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. F. Carter (ed), “Fatigue and Impact Resistance of Plastics”, Proc. of Fourth Annual Plastics Conf., Eastern Mich. Univ. (Industrial Education Department, 1969).Google Scholar
  2. 2.
    J. Morrow,ASTM STP 378 (1965) 45.Google Scholar
  3. 3.
    R. W. Landgraf,ibid 467 (1970) 3.Google Scholar
  4. 4.
    C. E. Feltner andR. W. Landgraf, “Selecting Materials to Resist Low Cycle Fatigue”, ASME Paper No. 69-DE-59 (1969).Google Scholar
  5. 5.
    P. Beardmore andS. Rabinowitz, to be published.Google Scholar
  6. 6.
    R. D. Hanna,Technical Papers, Soc. Plast. Eng. 7 (1961) 16–3.Google Scholar
  7. 7.
    N. E. Waters,J. Mater. Sci. 1 (1966) 354.Google Scholar
  8. 8.
    R. W. Hertzberg, H. Nordberg andJ. A. Manson,ibid 5 (1970) 521.Google Scholar
  9. 9.
    E. H. Andrews andB. J. Walker,Proc. Roy. Soc. Lond. A325 (1971) 57.Google Scholar
  10. 10.
    A. J. McEvily, R. C. Boettner andT. L. Johnston, Tenth Sagamore Army Materials Research Conference (Syracuse University Press, 1964) p. 107.Google Scholar
  11. 11.
    M. N. Riddell, G. P. Koo andJ. L. O'Toole,Polymer Eng. Sci. 6 (1966) 363.Google Scholar
  12. 12.
    I. Constable, J. G. Williams andD. J. Burns,J. Mech. Eng. Sci. 12 (1970) 20.Google Scholar
  13. 13.
    C. E. Feltner andM. R. Mitchell,ASTM STP 465 (1969) 27.Google Scholar
  14. 14.
    S. Rabinowitz andP. Beardmore,Crit. Rev. Macro. Sci. 1 (1972) 1.Google Scholar
  15. 15.
    R. A. Duckett, S. Rabinowitz andI. M. Ward,J. Mater. Sci. 5 (1970) 909.Google Scholar
  16. 16.
    C. E. Feltner andC. Laird,Acta Metallurgica,15 (1967) 1621.Google Scholar
  17. 17.
    R. E. Robertson,J. Chem. Phys. 44 (1966) 3950.Google Scholar
  18. 18.
    L. F. Coffin,Trans. ASM 60 (1967) 160.Google Scholar
  19. 19.
    A. Siegmann andP. H. Geil,J. Macromol. Sci. B4 (1970) 557.Google Scholar
  20. 20.
    G. S. Y. Yeh,ibid B6 (3) (1972) 465.Google Scholar
  21. 21.
    C. Laird,ASTM STP 415 (1967) 131.Google Scholar
  22. 22.
    G. Rehage andG. Goldback,Argew. Makromal. Chem. 1 (1967) 125.Google Scholar
  23. 23.
    S. Rabinowitz, A. R. Krause andP. Beardmore,J. Mater. Sci. 8 (1973) 11.Google Scholar
  24. 24.
    P. Beardmore andS. Rabinowitz,ibid 7 (1972) 720.Google Scholar
  25. 25.
    P. Beardmore,Phil. Mag. 19 (1969) 389.Google Scholar
  26. 26.
    P. Beardmore andS. Rabinowitz,J. Mater. Sci. 6 (1971) 80.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1974

Authors and Affiliations

  • S. Rabinowitz
    • 1
  • P. Beardmore
    • 1
  1. 1.Metallurgy Department, Scientific Research StaffFord Motor CompanyDearbornUSA

Personalised recommendations