Biochemical Genetics

, Volume 32, Issue 3–4, pp 75–82 | Cite as

Inheritance at five loci in the freshwater snail,Physa heterostropha

  • Robert T. DillonJr.
  • Amy R. Wethington
Note

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boycott, A., and Diver, C. (1927). The origin of an albino mutation inLimnaea peregra.Nature.1199.Google Scholar
  2. Brussard, P., and McCracken, G. (1974). Allozymic variation in a North American colony ofCepaea nemoralis.Heredity 3398.Google Scholar
  3. Clayton, J. W., and Tretiak, D. N. (1972). Amine-citrate buffers for pH control in starch gel electrophoresis.J. Fish. Res. Board Can. 291169.Google Scholar
  4. Dillon, R. T., Jr. (1985). Correspondence between the buffer systems suitable for electrophoretic resolution of bivalve and gastropod isozymes.Comp. Biochem. Physiol. 82B643.Google Scholar
  5. Dillon, R. T., Jr. (1992). Electrophoresis IV, nuts and bolts.World Aquacult. 23(2):48.Google Scholar
  6. Dillon, R. T., Jr., and Dutra-Clarke, A. (1992).Biomphalaria in South Carolina.Malac. Rev. 25129.Google Scholar
  7. Dillon, R. T., Jr., and Wethington, A. R. (1992). The inheritance of albinism in a freshwater snail,Physa heterostropha.J. Hered. 83208.Google Scholar
  8. Jarne, P., and Delay, B. (1991). Population genetics of freshwater snails.Trends. Ecol. Evol. 6383.Google Scholar
  9. Jarne, P., Vianey-Liaud, M., and Delay, B. (1993). Selfing and outcrossing in hermaphrodite freshwater gastropods (Basommatophora): Where, when and why.Biol. J. Linn. Soc. 4999.Google Scholar
  10. Jelnes, J. (1982). Enzyme analyses on seven laboratory stocks and two natural populations ofHelisoma duryi. Electrophoretic patterns of eight enzymes with genetic information on four polymorphic enzymes.Hereditas 979.Google Scholar
  11. Johnson, M. (1979). Inheritance and geographic variation of allozymes inCepaea nemoralis.Heredity 43137.Google Scholar
  12. Jones, J., Lieth, B., and Rawlings, P. (1977). Polymorphism inCepaea: A problem with too many solutions.Annu. Rev. Ecol. Syst. 8109.Google Scholar
  13. Liu, B., and Knapp, S. (1990). GMENDEL: A program for Mendelian segregation and linkage analysis of individual or multiple progeny populations using log-likelihood ratios.J. Hered. 81407.Google Scholar
  14. McCracken, G., and Selander, R. (1980). Self-fertilization and monogenic strains in natural populations of terrestrial slugs.Proc. Natl. Acad. Sci. USA 77684.Google Scholar
  15. Mulvey, M., and Vrijenhoek, R. C. (1981a). Multiple paternity in the hermaphroditic snail,Biomphalaria obstructa.J. Hered. 72308.Google Scholar
  16. Mulvey, M., and Vrijenhoek, R. C. (1981b). Genetic variation among laboratory strains of the planorbid snailBiomphalaria glabrata.Biochem. Genet. 191169.Google Scholar
  17. Mulvey, M., and Vrijenhoek, R. C. (1984). Genetics ofBiomphalaria glabrata: Linkage analysis and crossing compatibilities among laboratory strains.Malacologia 25513.Google Scholar
  18. Mulvey, M., and Woodruff, D. (1985). Genetics ofBiomphalaria glabrata: Linkage analysis of genes for pigmentation, enzymes, and resistance toSchistosoma mansoni.Biochem. Genet. 22877.Google Scholar
  19. Mulvey, M., Woodruff, D., and Carpenter, M. (1988). Linkage relationships of seven enzyme and two pigmentation loci in the snailBiomphalaria glabrata.J. Hered. 79473.Google Scholar
  20. Oxford, G. (1973). The genetics ofCepaea esterases. I.Cepaea nemoralis.Heredity 30127.Google Scholar
  21. Oxford, G. (1975). Food-induced esterase phenocopies in the snail,Cepaea nemoralis.Heredity 35361.Google Scholar
  22. Richards, C. S. (1970). Genetics of a molluscan vector of schistosomiasis.Nature (Lond.) 227806.Google Scholar
  23. Richards, C. S. (1985). A new pigmentation mutant inBiomphalaria glabrata.Malacologia 17145.Google Scholar
  24. Rollinson, D., Kane, R. A., and Lines, J. R. L. (1989). An analysis of fertilization inBulinus cernicus (Gastropoda: Planorbidae).J. Zool. (Lond.) 217295.Google Scholar
  25. Rudolph, P. H., and Bailey, J. B. (1985). Copulation as females and use of allosperm in the freshwater snail genusBulinus (Gastropoda: Planorbidae).J. Mollusc. Stud. 51267.Google Scholar
  26. Rudolph, P., and Burch, J. (1987). Inheritance of alleles at ten enzymatic loci of the freshwater snailStagnicola elodes (Basommatophora: Lymnaeidae).Genet. Res. 49201.Google Scholar
  27. Schrag, S. J., Rollinson, D., Keymer, A. E., and Read, A. F. (1992). Heritability of male outcrossing ability in the simultaneous hermaphrodite,Bulinus truncatus (Gastropoda: Planorbidae).J. Zool. (Lond.) 226311.Google Scholar
  28. Selander, R., and Kaufman, D. (1975). Genetic structure of populations of the brown snail (Helix aspersa) I. Microgeographic variation.Evolution 29385.Google Scholar
  29. Shaw, C. R., and Prasad, R. (1970). Starch gel electrophoresis of enzymes—A compilation of recipes.Biochem. Genet. 4297.Google Scholar
  30. Wethington, A. R., and Dillon, R. T., Jr. (1991). Sperm storage and evidence for multiple insemination in a natural population of the freshwater snail,Physa.Am. Malac. Bull. 999.Google Scholar
  31. Wethington, A. R., and Dillon, R. T., Jr. (1993). Reproductive development in the hermaphroditic freshwater snail,Physa, monitored with complementing albino lines.Proc. Roy. Soc. Lond. B 252109.Google Scholar
  32. Wethington, A. R., and Dillon, R. T., Jr. (1994). Gender choice and gender conflict in a non-reciprocally mating simultaneous hermaphrodite, the freshwater snail,Physa (submitted for publication).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Robert T. DillonJr.
    • 1
  • Amy R. Wethington
    • 1
  1. 1.Department of BiologyCollege of CharlestonCharleston
  2. 2.Department of BiologyIndiana UniversityBloomington

Personalised recommendations