Advertisement

Biochemical Genetics

, Volume 27, Issue 5–6, pp 263–277 | Cite as

Rapid enzyme kinetic assays of individualDrosophila and comparisons of field-caughtD. melanogaster andD. simulans

  • Andrew G. Clark
  • Lisa E. Keith
Article

Abstract

Techniques for performing numerous enzyme kinetic assays with minimum time and effort would be valuable to studies of the evolutionary genetics of metabolic control and the quantitative genetics of determinants of kinetic parameters. Microtiter plate readers have been used for a variety of repetitious analytical techniques, and instruments are available that can take repetitive readings with sufficient speed to perform kinetic assays. The ability of these instruments to assay rapidly the kinetic properties of small samples makes them potentially useful for a number of problems in population genetics. While the ability to handle large numbers of samples is very attractive, the small sample volumes and optical imprecision of microtiter plates result in some sacrifice in accuracy. This paper presents methods for performing kinetic assays on individual field-caughtDrosophila, quantifies the precision of these methods, and characterizes differences amongDrosophila melanogaster andD. simulans from samples caught in California and Pennsylvania. Comparisons between field-caught and laboratory rearedD. melanogaster show that most of the characters are very similar, with the exception of αGPDH, which has a threefold higher mean activity among field-caught flies. The phenotypic correlations are presented with a brief discussion of their relevance to assessing the evolution of metabolic control of these enzymes.

Key words

Drosophila kinetic plate reader enzyme polymorphism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnes, P. T., and Laurie-Ahlberg, C. C. (1986). Genetic variability of flight metabolism inDrosophila melanogaster. III. Effects of GPDH allozymes and environmental temperature on power output.Genetics 112267.Google Scholar
  2. Bucolo, G., and David, H. (1973). Quantitative determination of serum triglycerides by the use of enzymes.Clin. Chem. 19476.Google Scholar
  3. Burton, R. S., and La Spada, A. (1986). Trehalase polymorphism inDrosophila melanogaster.Biochem. Genet. 24715.Google Scholar
  4. Canova-Davis, E., Redemann, C. T., Vollmer, Y. P., and Kung, V. T. (1986). Use of a reversed-phase evaporation vesicle formulation for a homogeneous liposome immunoassay.Clin. Chem. 321687.Google Scholar
  5. Clark, A. G. (1989a). Causes and consequences of variation in energy storage inDrosophila melanogaster, Genetics, in press.Google Scholar
  6. Clark, A. G. (1989b). Genetic components of variation in energy storage inDrosophila melanogaster, Evolution, in press.Google Scholar
  7. Clark, A. G., and Gellman, W. (1985). A rapid spectrophotometric assay of triglycerides inDrosophila.Dros. Info. Serv. 61190.Google Scholar
  8. Clark, A. G., and Keith, L. E. (1988). Variation among extracted lines ofDrosophila melanogaster in triacylglycerol and carbohydrate storage.Genetics 119595.Google Scholar
  9. Doane, W. W., and Treat-Clemons, L. (1982). Biochemical map of the “fruit fly”Drosophila melanogaster. In O'Brien, S. J. (ed.),Genetic Maps Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., Vol. 2.Google Scholar
  10. Geer, B. W., Bowman, J. T., and Simmons, J. R. (1974). The pentose shunt in wild type and glucose-6-phosphate dehydrogenase deficientDrosophila melanogaster.J. Exp. Zool. 18777.Google Scholar
  11. Geer, B. W., Langevin, M. L., and McKechnie, S. W. (1985). Dietary ethanol and lipid synthesis inDrosophila melanogaster.Biochem. Genet. 23607.Google Scholar
  12. Laurie-Ahlberg, C. C., Wilton, A. N., Curtsinger, J. W., and Emigh, T. H. (1982). Naturally occurring enzyme activity variation inDrosophila melanogaster. I. Sources of variation for 23 enzymes.Genetics 102191.Google Scholar
  13. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951). Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193265.Google Scholar
  14. Lucchesi, J. C., and Rawls, J. M. (1973). A comparison of X-linked enzyme activities in relation to gene dosage in diploids and triploids ofDrosophila melanogaster.Biochem. Genet. 941.Google Scholar
  15. Michal, G., Möllering, H., and Siedel, J. (1983). Chemical design of indicator reactions for the visible range. In Bergmeyer, H. U. (ed.),Methods of Enzymatic Analysis 3rd ed., Verlag Chemie, Weinheim, pp. 197–209.Google Scholar
  16. Miller, R. G., Jr. (1981).Simultaneous Statistical Inference McGraw-Hill, New York.Google Scholar
  17. Murphy, T. A., and Wyatt, G. R. (1965). The enzymes of glycogen and trehalose synthesis in silkmoth fat body.J. Biol. Chem. 2401500.Google Scholar
  18. Nepokroeff, C. M., Lakshmanan, M. R., and Porter, J. W. (1972). Fatty acid synthase from rat liver. InMethods in Enzymology, Vol. 23 Academic Press, New York, pp. 37–44.Google Scholar
  19. O'Brien, S. J., and MacIntyre, R. J. (1978). Genetics and biochemistry of enzymes and specific proteins ofDrosophila. In Ashburner, M., and Wright, T. (eds.),The Genetics and Biology of Drosophila Academic Press, New York, Vol. 2a, pp. 396–552.Google Scholar
  20. Raabo, E., and Terkildsen, T. C. (1960). On the enzymatic determination of blood glucose.Scand. J. Clinic. Lab. Invest. 12402.Google Scholar
  21. Sacktor, B. (1975). Biochemistry of insect flight. In Candy, D. J., and Kilby, B. A. (eds.),Insect Biochemistry and Function John Wiley and Sons, New York, pp. 3–88.Google Scholar
  22. Stam, L. F., and Laurie-Ahlberg, C. C. (1982). A semi-automated procedure for the assay of 23 enzymes fromDrosophila melanogaster.Insect Biochem. 12537.Google Scholar
  23. Steele, J. E. (1982). Glycogen phosphorylase in insects.Insect Biochem. 12131.Google Scholar
  24. Wilton, A. N., Laurie-Ahlberg, C. C., Emigh, T. H., and Curtsinger, J. W. (1982). Naturally occurring enzyme activity variation inDrosophila melanogaster. II. Relationship among enzymes.Genetics 102207–221.Google Scholar
  25. Ziegler, R., Ashida, M., Fallon, A. M., Winner, L. T., Wyatt, S. S., and Wyatt, G. R. (1979). Regulation of glycogen phosphorylase in fat body of Cecropia silkmoth pupae.J. Comp. Physiol. 131321.Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • Andrew G. Clark
    • 1
  • Lisa E. Keith
    • 1
    • 2
  1. 1.Department of Biology and Genetics ProgramPennsylvania State UniversityUniversity Park
  2. 2.Division of Biological SciencesState University of New YorkStony Brook

Personalised recommendations