Journal of Materials Science

, Volume 27, Issue 3, pp 616–624 | Cite as

Microstructure of zirconia-yttria plasma-sprayed thermal barrier coatings

  • P. D. Harmsworth
  • R. Stevens


The objective of this paper is to report on the characterization of the highly complex microstructure of zirconia coatings, which arise as a result of the plasma-spraying process. The fine structure has been observed to change through the thickness of the coating, behaviour which has been related to the cooling rate and crystallization of the deposited material. Microstructural features such as an amorphous bond coat/ceramic interfacial film and a grain-boundary glassy phase, which are believed to have a significant effect upon coating properties such as adhesion and compliance, have been shown to be present.


Polymer Microstructure Crystallization Zirconia Cool Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. A. Miller, S. R. Levine andS. Steewa, Al AA80-0302 (1980).Google Scholar
  2. 2.
    R. A. Miller, S. R. Levine andP. E. Hodge, “Superalloys” (American Society for Metals, 1980) p. 433.Google Scholar
  3. 3.
    P. Morrell, PhD thesis, UMIST (1985).Google Scholar
  4. 4.
    K. Maraleedharan et al., J. Amer. Ceram. Soc. 71 (1982) C-226.Google Scholar
  5. 5.
    S. L. Shinde andL. C. DeJonghe,J. Electron Micro. Tech. 3 (1986) 361.Google Scholar
  6. 6.
    M. I. Manning andP. C, Rowlands,Brit. Corros. J. 15 (1984) 184.Google Scholar
  7. 7.
    J. C. Bravman andR. Sinclair,J. Electron Micro. Tech. 1 (1984) 53.Google Scholar
  8. 8.
    C. S. Baxter, S. B. Newcomb andW. M. Stubbs,Inst. Phys. Conf. Ser. 68 (1984) 319.Google Scholar
  9. 9.
    B. Truck andB. Oberlander,M.R.S. Europe (1985) 221.Google Scholar
  10. 10.
    S. Safai andH. Herman, Conference Proceeding, Welding Institute (1978) p. 347.Google Scholar
  11. 11.
    H. Meyer,Deut. Keram. Gesell. Ber. 41 (1964) 112.Google Scholar
  12. 12.
    C. C. Berndt andR. McPherson,Mater. Sci. Res. 19 (1985) 265.Google Scholar
  13. 13.
    P. Boch et al, Adv. Ceram. 12 (1984) 488.Google Scholar
  14. 14.
    V. H. S. Wilms, PhD thesis, University of New York, Stony Brook (1981).Google Scholar
  15. 15.
    R. McPherson,J. Mater. Sci. 15 (1980) 3141.Google Scholar
  16. 16.
    Idem, Thin Sol. Films 83 (1981) 297.Google Scholar
  17. 17.
    R. C. Rahl,Mater. Sci. Engng 1 (1966/67) 311.Google Scholar
  18. 18.
    S. Safai andH. Herman,Thin Sol. Films 45 (1977) 295.Google Scholar
  19. 19.
    D. Turnbull,J. Chem. Phys. 18 (1950) 768.Google Scholar
  20. 20.
    V. H. S. Wilms,Thin Sol. Films 39 (1976) 251.Google Scholar
  21. 21.
    G. Lorimer andG. Cliff, in “Proceedings of the 5th European Conference on Electron Microscopy” (Institute of Physics, London, 1972) p. 203.Google Scholar
  22. 22.
    A. Vardelle, M. Vardelle, R. McPherson andP. Fauchais, in “9th International Thermal Spray Conference”, Paper 30 (1980) p. 155.Google Scholar
  23. 23.
    M. Ruhle, N. Claussen andA. H. Heuer,Adv. Ceram. 12 (1984) 352.Google Scholar
  24. 24.
    C. C. Berndt andR. McPherson, in “9th International Thermal Spray Conference” (1980) p. 310.Google Scholar
  25. 25.
    Idem, Mater. Sci. Res. 14 (1982) 619.Google Scholar
  26. 26.
    C. C. Berndt andR. A. Miller,Ceram. Engng Sci. Proc. 5 (1984) 479.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • P. D. Harmsworth
    • 1
  • R. Stevens
    • 1
  1. 1.School of MaterialsUniversity of LeedsLeedsUK

Personalised recommendations