Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Calculation of impact transition temperature of low density polyethylene from shift factor via a free volume approach

Abstract

A relationship between the impact transition temperatureT i and the stress concentration factorK s is derived. The relationship involves the temperature shift factora T; in turn,a T depends on the free volume. In earlier work in this problem Zewi and Corneliussen [6] utilized the W-L-F equation. Here a more direct relationship betweena T and the free volume is applied. Satisfactory values ofK s corresponding to givenT i are obtained for a wide temperature range; the range also includes temperatures below the glass transition pointT g. The opinion that a free volume exists between 0 K andT g is upheld.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    H. H. Kausch, “Polymer Fracture” (Springer, New York, 1978).

  2. 2.

    Z. Jedlinski, “Thermal Stability of Polymers Containing Naphtalene Units in the Chains”, (Polish Scientific Publishers, Warsaw, 1977).

  3. 3.

    W. Brostow, “Science of Materials” (Wiley, New York, 1979).

  4. 4.

    F. Bueche, “Physical Properties of Polymers”, (Wiley, New York, 1962).

  5. 5.

    E. H. Andrews, “Fracture in Polymers”, (American Elsevier, New York, 1968).

  6. 6.

    I. G. Zewi andR. D. Corneliussen,Amer. Chem. Soc. Polymer Papers 20-1 (1979) 960.

  7. 7.

    R. Corneliussen, E. Lind andW. Rudik,Proc. Ann. Tech. Conf. Soc. Plastics Eng. 36 (1978) 283.

  8. 8.

    I. G. Zewi, W. J. Rudik, R. D. Corneliussen andE. V. Lind,Polymer Eng. Sci. 20 (1980) 622.

  9. 9.

    S. N. Zhurkov andV. E. Korsukov,Fiz. Tverd. Tela 15 (1973) 2071.

  10. 10.

    V. R. Regel, A. I. Slutsker andE. E. Tomashevskii, “Kineticheskaya priroda prochnosti tverdykh tel” (Nauka, Moskva, 1974).

  11. 11.

    M. G. Zaitsev andI. V. Razumovskaya,Vysokomol. soed. B 22 (1980) 198.

  12. 12.

    A. A. Griffith,Phil. Trans. Royal Soc. A 221 (1920) 163.

  13. 13.

    Idem Int. Conf. Appl. Mech. Delft 1 (1924) 55A.

  14. 14.

    J. D. Ferry, “Viscoelectric Properties of Polymers”, 2nd edn (Wiley, New York, 1970).

  15. 15.

    A. K. Doolittle,J. Appl. Phys. 22 (1951) 1741.

  16. 16.

    P. J. Flory,J. Amer. Chem. Soc. 87 (1965) 1833.

  17. 17.

    Idem, Disc. Faraday Soc. 49 (1970) 7.

  18. 18.

    D. Patterson,Pure Appl. Chem. 31 (1972) 133.

  19. 19.

    W. Brostow andJ. S. Sochanski,J. Mater. Sci. 10 (1975) 2134.

  20. 20.

    W. Brostow,Polymer 21 (1980) 1410.

  21. 21.

    R. Simha andT. Somcynsky,Macromolecules 2 (1969) 342.

  22. 22.

    L. A. Utracki,J. Macromol Sci.Phys. 10 (1974) 477.

  23. 23.

    L. A. Utracki, presented at the Chemical Institute of Canada Annual Meeting, Ottawa, June 1980.

  24. 24.

    J. S. Vrentas andJ. L. Duda,J. Appl. Polymer Sci. 22 (1978) 2325.

  25. 25.

    Z. Roszkowski,Makromol. Chem. 180 (1979) 1313.

  26. 26.

    A. K. Doolittle,J. Franklin Inst. 295 (1973) 217.

  27. 27.

    Idem, ibid. 301 (1976) 241.

  28. 28.

    Idem, J. Appl. Polymer Sci. 24 (1979) 1329.

  29. 29.

    Idem, ibid. 25 (1980) 307.

  30. 30.

    M. L. Williams, L. F. Landel andJ. D. Ferry,J. Amer. Chem. Soc. 77 (1955) 3701.

  31. 31.

    P. Zoller,J. Polymer Sci. Phys. 18 (1980) 157.

  32. 32.

    J. C. Sanchez andR. H. Lacombe,J. Phys. Chem. 80 (1976) 2352.

  33. 33.

    Idem, J. Polymer Sci. Lett. 15 (1977) 71.

  34. 34.

    R. Simha andR. K. Jain,J. Polymer Sci. Phys. 16 (1978) 1471.

  35. 35.

    R. Simha,Macromolecules 10 (1977) 1025.

  36. 36.

    A. Siegman andP. H. Geil,J. Macromol. Sci. Phys. 4 (1970) 239.

  37. 37.

    R. Lam andP. H. Geil,Science 205 (1979) 1388.

  38. 38.

    B. Morèse-Séguéla, M. St-Jacques, J. M. Renaud andJ. Prud'homme,Macromolecules 13 (1980) 100.

  39. 39.

    R. W. Fillers andN. W. Tschoegl,Tram. Soc. Rheol. 21 (1977) 51.

  40. 40.

    J. D. Ferry andR. A. Stratton,Kolloid-Z. 171 (1960) 107.

  41. 41.

    S. C. Sharda andN. W. Tschoegl,Trans, Soc. Rheol. 20 (1976) 361.

  42. 42.

    F. D. Murnaghan, “Finite Deformation of an Elastic Solid” (Wiley, New York, 1951) p. 68.

  43. 43.

    P. Tait, “Physics and Chemistry of the Voyage of HMS Challenger”, Vol. II, (Cambridge University Press, Cambridge 1900) p. 1.

  44. 44.

    W. Brostow andP. Maynadier,High Temp. Sci. 11 (1979) 7.

  45. 45.

    V. H. Kenner andW. G. Knauss,Bull. Amer. Phys. Soc. 25 (1980) 286.

  46. 46.

    V. H. Kenner andW. G. Knauss,J. Appl. Phys. 51 (1980) 5131.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brostow, W., Corneliussen, R.D. Calculation of impact transition temperature of low density polyethylene from shift factor via a free volume approach. J Mater Sci 16, 1665–1672 (1981). https://doi.org/10.1007/BF00553981

Download citation

Keywords

  • Polymer
  • Polyethylene
  • Transition Temperature
  • Glass Transition
  • Stress Concentration