Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Accelerated fatigue fracture mechanism of medium density polyethylene pipe material

  • 38 Accesses

  • 3 Citations


Fatigue crack propagation studies were performed in medium density polyethylene pipe to elucidate the damage mechanism associated with pipe failure. Past pipe testing methods required up to several years to produce failures which mimicked those observed in the field. However, by fatiguing a specially designed test specimen, brittle failure, resembling that observed under service conditions, was produced in only three days. It was determined that the method of loading and the crack plane orientation greatly affect the degree and extent of brittle crack propagation. In some specimen geometries, the initial brittle fracture may undergo a transition to a more ductile failure mode. The damage which precedes the crack tip during brittle cracking is a root craze and two smaller side crazes; these crazes are primarily composed of yielded membranes which are oriented normal to the crack propagation direction, rather than being composed of fibrils. The number and length of these crazes was shown to be dependent on the chosen test geometry.

This is a preview of subscription content, log in to check access.


  1. 1.

    Annual Book of ASTM Standards, Vol. 8.04 (1988) p. D2837.

  2. 2.

    Ibid., Vol. 8.04 (1988) p. D2290.

  3. 3.

    Ibid., Vol. 8.04 (1988) p. D2412.

  4. 4.

    Ibid., Vol. 8.02 (1988) p. D1693.

  5. 5.

    K. G. Toll, E. F. Palermo andG. T. Appelton, in Proceedings of 10th Plastic Fuel Gas Pipe Symposium, New Orleans, October 1987 (American Gas Association, 1987) p. 142.

  6. 6.

    A. Lustiger andR. D. Corneliussen,J. Mater. Sci. 22 (1987) 2470.

  7. 7.

    H. Nishimura, T. Shishido andM. Nakakura, in Proceedings of 9th Plastic Fuel Gas Pipe Symposium, New Orleans, November 1985 (American Gas Association, Arlington) p. 70.

  8. 8.

    A. Moet, A. Chudnovsky, J. Strebel andK. Chaoui, in Proceedings of 11th Plastic Fuel Gas Pipe Symposium, San Francisco, October 1989 (American Gas Association, Arlington) p. 327.

  9. 9.

    Y. Zouh, Y. Ling, X. Lu andN. Brown,ibid. p. 321.

  10. 10.

    R. H. Olley, A. M. Hodge andD. C. Bassett,J. Polym. Sci. Polym. Phys. Edn 17 (1979) 627.

  11. 11.

    H. Swei, B. Crtst andS. H. Carr,Polymer in press.

  12. 12.

    A. Lustiger, R. L. Markham andM. M. Epstein,J. Appl. Polym. Sci. 26 (1981) 1049.

  13. 13.

    X. Lu, R. Qian andN. Brown,J. Mater. Sci. 26 (1991) 881.

  14. 14.

    A. Chudnovsky, A. Moet, R. J. Bankert andM. T. Takemori,J. Appl Phys. 54 (1983) 5562.

  15. 15.

    T. E. Brady andG. S. Y. Yeh,J. Mater. Sci. 8 (1973) 1083.

  16. 16.

    M. T. Takemori andD. S. Matsumoto,J. Polym. Sci., Polym. Phys. Edn. 20 (1982) 2027.

  17. 17.

    M. D. Skibo, R. W. Hertzberg, J. A. Manson andS. L. Kim,J. Mater. Sci. 12 (1977) 531.

  18. 18.

    B. D. Lauterwasser andE. J. Kramer,Phil. Mag. A 39 (1979) 469.

  19. 19.

    C. C. Chau andJ. C. M. Li,J. Mater. Sci. 16 (1981) 1858.

  20. 20.

    H. H. Kausch andC. Oudet,Makromol. Chem., Macromol. Symp. 22 (1988) 207.

  21. 21.

    Annual Book of ASTM Standards, Vol. 2.02 (1988) p. E399.

  22. 22.

    A. Lustiger, M. J. Cassady, F. S. Uralil andL. E. Hulbert, “Field Failure Reference Catalog for Polyethylene Gas Piping”, 1st Edn (Gas Research Institute, Chicago, 1986) pp. 26,29.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Strebel, J.J., Moet, A. Accelerated fatigue fracture mechanism of medium density polyethylene pipe material. J Mater Sci 26, 5671–5680 (1991).

Download citation


  • Fatigue
  • Fatigue Crack
  • Fatigue Fracture
  • Brittle Fracture
  • Fatigue Crack Propagation