Biochemical Genetics

, Volume 31, Issue 9–10, pp 363–374 | Cite as

DNA fingerprint analysis of a free-range koala population

  • P. Timms
  • J. Kato
  • M. Maugeri
  • N. White


Thirty-six koalas in a free-range Queensland population were fingerprinted using an M13 probe in combination withMspI digestion. The technique was found to be highly repeatable, with estimates of 0.1–1.6% within-gel error and 0.1–2.5% between-gel error. Of the 43 different-size fingerprint bands produced in the population, only 2 bands were common to all 36 koalas. Ten bands were quite rare, occurring at a frequency of 0.2 or less. All 36 koalas had unique DNA fingerprints (probability of 1.88×10−7), which enabled them each to be uniquely identified. Despite this, there was still a high level of band sharing in the population (mean number of shared bands =0.749). This level is much higher than that reported for humans, birds, cats, dogs, and cattle but not as high as that reported previously for Victorian koalas. This lack of genetic variation may influence the ability of the population to respond to stress situations, such as lack of food, habitat destruction, and disease.

Key words

koala free-range population DNA fingerprint database 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bell, G. I., Selby, M. J., and Rutter, W. J. (1982). The highly polymorphic region near the human insulin gene is composed of simple tandemly repeating sequences.Nature 29531.PubMedGoogle Scholar
  2. Brown, A. S., Girjes, A. A., Lavin, M. F., Timms, P., and Woolcock, J. B. (1987). Chlamydial disease in koalas.Aust. Vet. J. 64346.PubMedGoogle Scholar
  3. Burke, T., and Bruford, M. W. (1987). DNA fingerprinting in birds.Nature 327149.PubMedGoogle Scholar
  4. Burke, T., Davies, N. B., Bruford, M. W., and Hatchwell, B. J. (1989). Parental care and mating behaviour of polyandrous dunnocksPrunella modularis related to paternity by DNA fingerprinting.Nature 338249.CrossRefGoogle Scholar
  5. Cocciolone, R. A., and Timms, P. (1992). DNA profiling of Queensland koalas reveals sufficient variability for individual identification and parentage determination.Wildlife Res. 19279.Google Scholar
  6. Georges, M., Lequarre, A. S., Castelli, M., Hanset, R., and Vassart, G. (1988). DNA fingerprinting in domestic animals using four different minisatellite probes.Cytogenet. Cell Genet. 47127.PubMedGoogle Scholar
  7. Jeffreys, A. J., and Morton, D. B. (1987). DNA fingerprints of dogs and cats.Anim. Genet. 181.Google Scholar
  8. Jeffreys, A. J., Wilson, V., and Thein, S. L. (1985a). Individual-specific “fingerprints” of human DNA.Nature 31676.PubMedGoogle Scholar
  9. Jeffreys, A. J., Brookfield, J. F. Y., and Semennoff, R. (1985b). Positive identification of an immigration test-case using human DNA fingerprints.Nature 317818.PubMedGoogle Scholar
  10. Jones, C. S., Lessells, C. M., and Krebs, R. J. (1991). Helpers-at-the-nest in European Bee-eaters (Merops apiaster): A genetic analysis. In Burke, T., Dolf, G., Jeffreys, A. J., and Wolff, R. (eds.),DNA Fingerprinting Approaches and Applications Birkhauser Verlag, Basel, Switzerland.Google Scholar
  11. Knott, T. J., Wallis, S. C., Pease, R. J., Powell, L. M., and Scott, J. (1986). A hypervariable region 3′ to the human apolipoprotein B gene.Nucleic Acids Res. 149215.PubMedGoogle Scholar
  12. Miller, S. A., Dykes, D. D., and Polesky, H. F. (1988). A simple salting out procedure for extracting DNA from human nucleated cells.Nucleic Acids Res. 161215.PubMedGoogle Scholar
  13. Packer, C., Gilbert, D. A., Pusey, A. E., and O'Brien, S. J. (1991). A molecular genetic analysis of kinship and cooperation in African lions.Nature 351562.Google Scholar
  14. Reeve, H. K., Westneat, D. F., Noon, W. A., Sherman, P. W., and Aquardo, C. F. (1990). DNA “fingerprinting” reveals high levels of inbreeding in colonies of the eusocial naked mole-rat.Proc. Natl. Acad. Sci. 872496.PubMedGoogle Scholar
  15. Rogstad, S. H., Patton, J. C. II, and Schaal, B. A. (1988). M13 repeat probe detects DNA minisatellite like sequences in gymnosperms and angiosperms.Proc. Natl. Acad. Sci. USA 859176.PubMedGoogle Scholar
  16. Southern, E. M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis.J. Mol. Biol. 98503.PubMedGoogle Scholar
  17. Taylor, A. C., Marshall Graves, J. A., Murray, N. D., and Sherwin, W. B. (1991). Conservation genetics of the koala (Phascolarctos cinereus). II. Limited variability in minisatellite DNA sequences.Biochem. Genet. 29355.PubMedGoogle Scholar
  18. Vassart, G., Georges, M., Monsieur, R., Brocas, H., Lequarre, A. S., and Christopher, D. (1987). A sequence in M13 phage detects hypervariable minisatellites in human and animal DNA.Science 235683.PubMedGoogle Scholar
  19. Wetton, J. H., Carter, R. E., Parkin, D. T., and Walters, D. (1987). Demographic study of a wild house sparrow population by DNA fingerprinting.Nature 327147.CrossRefPubMedGoogle Scholar
  20. Worthington-Wilmer, J. M., Melzer, A., Carrick, F., and Moritz, C. (1993). Low genetic diversity and inbreeding depression in Queensland koalas: Implications for conservation.Wildlife Res. (in press).Google Scholar
  21. Wyman, A., and White, R. (1980). A highly polymorphic locus in human DNA.Proc. Natl. Acad. Sci. USA 776754.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • P. Timms
    • 1
  • J. Kato
    • 1
  • M. Maugeri
    • 1
  • N. White
    • 2
  1. 1.Centre for Molecular Biotechnology, School of Life ScienceQueensland University of TechnologyBrisbaneAustralia
  2. 2.Centre for Biological Population Management, School of Life ScienceQueensland University of TechnologyBrisbaneAustralia

Personalised recommendations