Journal of Materials Science

, Volume 21, Issue 4, pp 1398–1404 | Cite as

Loss of entanglement density during crazing

  • Chris S. Henkee
  • Edward J. Kramer
Papers

Abstract

The formation of fibril surface area during craze growth requires a loss of entangled strand density in the fibrils themselves. To demonstrate the decrease in entangled chain density, thin films of polystyrene are bonded to soft copper grids and strained in tension. This procedure produces crazed specimens in which the craze fibrils can be characterized by a well-defined draw ratio,λ0. The films are then exposed to electron irradiation. This produces chemical crosslinks between the molecules, thus forming a crosslinked network. Subsequent heating of the film aboveTg results in the entanglement network trying to retract toλ=1. The crosslink network, however, tries to maintain theλ. of the craze fibrils atλ0. The craze fibrils thus retract to Ferry's “state of ease”,λS, where the tension of the entanglement network is balanced by the compression of the crosslink network. Measurements ofλs in crazes crosslinked and then healed confirm that a 25 to 50% loss of entanglement density in craze fibrils occurs, in agreement with theoretical predictions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Beahan, M. Bevis andD. Hull,Phil. Mag. 24 (1971) 1267.Google Scholar
  2. 2.
    S. Rabinowitz andP. Beardmore,CRC Revs. Macromol. Sci. 1 (1972) 1.Google Scholar
  3. 3.
    R. P. Kambour,J. Polym. Sci. Macromol. Rev. 7 (1973) 1.Google Scholar
  4. 4.
    T. E. Brady andG. S. Y. Yeh,J. Mater. Sci. 8 (1973) 1083.Google Scholar
  5. 5.
    P. Beahan, M. Bevis andD. Hull,ibid. 8 (1974) 162.Google Scholar
  6. 6.
    S. T. Wellinghoff andE. Baer,J. Macromol. Sci. B11 (1975) 367.Google Scholar
  7. 7.
    P. Beahan, M. Bevis andD. Hull,Proc. R. Soc. A343 (1975) 525.Google Scholar
  8. 8.
    D. L. G. Lainchbury andM. Bevis,J. Mater. Sci. 11 (1976) 222.Google Scholar
  9. 9.
    B. D. Lauterwasser andE. J. Kramer,Phil. Mag. 39A (1979) 469.Google Scholar
  10. 10.
    A. S. Argon, R. D. Andrews, J. A. Godrick andW. Witney,J. Appl. Phys. 39 (1968) 1899.Google Scholar
  11. 11.
    P. B. Bowden andS. Raha,Phil. Mag. 22 (1970) 463.Google Scholar
  12. 12.
    E. J. Kramer,J. Macromol. Sci. B10 (1974) 191.Google Scholar
  13. 13.
    G. A. Adam, A. Cross andR. N. Haward,J. Mater. Sci. 10 (1975) 1582.Google Scholar
  14. 14.
    J. B. C. Wu andJ. C. M. Li,ibid. 11 (1976) 434.Google Scholar
  15. 15.
    Idem, ibid. 11 (1976) 445.Google Scholar
  16. 16.
    S. T. Wellinghoff andE. Baer,J. Appl. Polym. Sci. 22 (1978) 2025.Google Scholar
  17. 17.
    C. C. Chau andJ. C. M. Li,J. Mater. Sci. 14 (1979) 1593.Google Scholar
  18. 18.
    Idem, ibid. 14 (1979) 2172.Google Scholar
  19. 19.
    N. J. Mills,Eng. Frac. Mech. 6 (1974) 537.Google Scholar
  20. 20.
    I. Narisawa, M. Ishikawa andH. Ogawa,Polymer J. 8 (1976) 181.Google Scholar
  21. 21.
    M. Ishikawa, I. Narisawa andH. Ogawa,ibid. 8 (1976) 391.Google Scholar
  22. 22.
    A. M. Donald andE. J. Kramer,J. Mater. Sci. 16 (1981) 2967.Google Scholar
  23. 23.
    Idem, ibid. 16 (1981) 2977.Google Scholar
  24. 24.
    Idem. 23 (1982) 1183.Google Scholar
  25. 25.
    Idem, J. Polym. Sci., Polym. Phys. Ed. 20 (1982) 899.Google Scholar
  26. 26.
    C. S. Henkee andE. J. Kramer,ibid. 22 (1984) 721.Google Scholar
  27. 27.
    A. M. Donald, E. J. Kramer andR. A. Bubeck,ibid. 20 (1982) 1129.Google Scholar
  28. 28.
    A. M. Donald andE. J. Kramer,Polymer 23 (1982) 461.Google Scholar
  29. 29.
    J. D. Ferry, in “Viscoelastic Properties of Polymers”, 3rd Edn, (Wiley, New York, 1980) p. 366.Google Scholar
  30. 30.
    W. W. Graessley,Adv. Polym. Sci. 16 (1974) 1.Google Scholar
  31. 31.
    S. Onogi, T. Masuda andK. Kitagawa,Macromol. 3 (1970) 111.Google Scholar
  32. 32.
    P. D. DeGennes,J. Chem. Phys. 55 (1971) 572.Google Scholar
  33. 33.
    M. Doi andS. F. Edwards,J. Chem. Soc., Faraday Trans. 2 74 (1978) 918.Google Scholar
  34. 34.
    Idem, ibid. 74 (1978) 1789.Google Scholar
  35. 35.
    Idem, ibid. 74 (1978) 1802.Google Scholar
  36. 36.
    E. J. Kramer,Adv. Polym. Sci. 52/53 (1983) 1.Google Scholar
  37. 37.
    Idem, Polym. Eng. Sci. 24 (1984) 761.Google Scholar
  38. 38.
    C. C. Kuo, S. L. Phoenix andE. J. Kramer,J. Mater. Sci. Lett. 4 (1985) 459.Google Scholar
  39. 39.
    J. D. Ferry,Polymer 20 (1979) 1343.Google Scholar
  40. 40.
    N. R. Langley,Macromol. 1 (1968) 348.Google Scholar
  41. 41.
    O. Kramer, R. L. Carpenter, V. Ty andJ. D. Ferry,ibid. 7 (1974) 79.Google Scholar
  42. 42.
    O. Kramer andJ. D. Ferry,ibid. 8 (1975) 87.Google Scholar
  43. 43.
    R. L. Carpenter, O. Kramer andJ. D. Ferry,ibid. 10 (1977) 117.Google Scholar
  44. 44.
    Idem, J. Appl. Polym. Sci. 22 (1978) 335.Google Scholar
  45. 45.
    R. L. Carpenter, H. C. Kan andJ. D. Ferry,Polym. Eng. Sci. 19 (1979) 267.Google Scholar
  46. 46.
    H. C. Kan andJ. D. Ferry,Macromol. 11 (1978) 1049.Google Scholar
  47. 47.
    H. C. Kan, R. L. Carpenter andJ. D. Ferry,J. Polym. Sci., Polym. Phys. Ed. 17 (1979) 1855.Google Scholar
  48. 48.
    H. C. Kan andJ. D. Ferry,Macromol. 12 (1979) 494.Google Scholar
  49. 49.
    L. R. G. Treloar,Rep. Prog. Phys. 36 (1973) 755.Google Scholar
  50. 50.
    D. S. Pearson, B. J. Skutnik andG. G. A. Bohm,J. Polym. Sci., Polym. Phys. Ed. 12 (1974) 925.Google Scholar
  51. 51.
    J. D. Ferry andH. C. Kan,Rubber Chem. Technol. 51 (1978) 731.Google Scholar
  52. 52.
    O. Kramer,Polymer 20 (1979) 1336.Google Scholar
  53. 53.
    D. E. Roberts andL. Mandelkern,J. Amer. Chem. Soc. 80 (1958) 1289.Google Scholar
  54. 54.
    R. Kitamaru andL. Mandelkern,Polym. Lett. 2 (1964) 1019.Google Scholar
  55. 55.
    A. Charlesby, D. Libby andM. G. Omerod,Proc. R. Soc. A262 (1961) 207.Google Scholar
  56. 56.
    H. R. Brown,J. Mater. Sci. 14 (1979) 237.Google Scholar
  57. 57.
    J. P. Berry, J. Scanlan andW. F. Watson,Trans. Faraday Soc. 52 (1956) 1137.Google Scholar
  58. 58.
    A. Greene, K. J. Smith andA. Ciferri,ibid. 61 (1965) 2772.Google Scholar
  59. 59.
    C. S. Henkee, PhD thesis, Cornell University (1985).Google Scholar

Copyright information

© Chapman and Hall Ltd. 1986

Authors and Affiliations

  • Chris S. Henkee
    • 1
  • Edward J. Kramer
    • 1
  1. 1.Department of Materials Science and Engineering and Materials Science CenterCornell UniversityIthacaUSA
  2. 2.Central ResearchMobil Chemical CompanyEdisonUSA

Personalised recommendations