Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Kinetics of non-isothermal crystallization process and activation energy for crystal growth in amorphous materials

  • 1479 Accesses

  • 447 Citations

Abstract

An equation expressing the volume fraction,x, of crystals precipitating in a glass heated at a constant rate, α, was derived. When crystal particles grow m-dimensionally,x is expressed as In [- ln(1 -x)] = -n (nα - 1.052mE/RT + Constant whereE is the activation energy for crystal growth andn is a numerical factor depending on the nucleation process. When the nuclei formed during the heating at the constant rate,α, are dominant,n is equal tom + 1, and when the nuclei formed in the previous heat-treatment before thermal analysis run are dominant,n is equal tom. The validity and usefulness of this equation was ascertained by applying it to a Li2O·2SiO2 glass. A method for determining the values ofn andm from DSC curves was proposed and it was concluded that the modified Ozawa-type plot is very useful and convenient to obtain the activation energy for crystal growth.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    H. E. Kissinger,Anal. Chem. 29 (1957) 1702.

  2. 2.

    T. Ozawa,J. Thermal Anal. 2 (1970) 301.

  3. 3.

    J. Colmenero andJ. M. BarandiarÁN,J. Non-Cryst. Solids 30 (1979) 263.

  4. 4.

    J. Colmenero andJ. Ilarraz,Thermochim. Acta 35 (1980) 381.

  5. 5.

    A. Marrota, A. Buri, F. Branda andS. Saiello, “Advances in Ceramics, Vol. 4, Nucleation and Crystallization in Glasses”, edited by J. H. Simmons, D. R. Uhlmann and G. H. Beall (The American Ceramic Society, Coulombus, 1982) pp. 146–152.

  6. 6.

    A. Marrota, S. Saiello, F. Branda andA. Buri,J. Mater. Sci. 17 (1982) 105.

  7. 7.

    A. Lucci, L. Battezzati, C. Antonione andG. Riontino,J. Non-Cryst. Solids 44 (1981) 287.

  8. 8.

    D. W. Henderson,ibid. 30 (1979) 301.

  9. 9.

    E. M. Marseglia,ibid. 41 (1980) 31.

  10. 10.

    K. Harnisch andR. Lanzenberger,ibid. 53 (1982) 235.

  11. 11.

    M. E. Fine, “Introduction to Phase Transformation in Condensed System” (Macmillan, New York, 1964) Chap. 3.

  12. 12.

    K. Matusita andS. Sakka,Phys. Chem. Glasses 20 (1979) 81.

  13. 13.

    Idem, J. Non-Cryst. Solids 38/39 (1980) 741.

  14. 14.

    Idem, Bull. Inst. Chem. Res. Kyoto Univ. 59 (1981) 159.

  15. 15.

    D. Turnbull andM. H. Cohen, “Modern Aspects of the Vitreous State”, edited by J. D. Mackenzie (Butterworth, London, 1960) pp. 38–62.

  16. 16.

    K. Matusita andM. Tashiro,Phys. Chem. Glasses 14 (1973) 77.

  17. 17.

    K. Matusita, T. Maki andM. Tashiro,ibid. 15 (1974) 106.

  18. 18.

    C. D. Doyle,J. Appl. Polym. Sci. 5 (1961) 285.

  19. 19.

    Idem, ibid. 6 (1962) 639.

  20. 20.

    K. Matusita andM. Tashiro,J. Non-Cryst. Solids 11 (1973) 471.

  21. 21.

    E. G. Rowlands andP. F. James,Phys. Chem. Glasses 20 (1979) 1 & 9.

  22. 22.

    K. Matusita andM. Tashiro,Yogyo-Kyokai-Shi 81 (1973) 500.

  23. 23.

    N. K. Chakraborty, S. K. Das, S. K. Niyogi andR. L. Thakur, Proceed. Xth ICG, No. 14 (The Ceramic Society of Japan, Tokyo, 1974) pp. 75–82.

  24. 24.

    J. Götz,Phys. Chem. Glasses 18 (1977) 32.

  25. 25.

    A. Marrota, A. Buri andF. Branda,Thermochim. Acta 40 (1980) 397.

  26. 26.

    S. Risbud,J. Amer. Ceram. Soc. 56 (1973) 440.

  27. 27.

    K. Matsuura andK. Suzuki,J. Mater. Sci. 14 (1979) 395.

  28. 28.

    D. D. Thornburg andR. I. Johnson,J. Non-Cryst. Solids 17 (1975) 2.

  29. 29.

    A. H. Abouelela, M. K. Elmously andK. S. Abdu,J. Mater. Sci. 15 (1980) 871.

  30. 30.

    J. A. Leake andA. L. Greer,J. Non-Cryst. Solids 38/39 (1980) 735.

  31. 31.

    C. Antonione, L. Battezzati, A. Lucci, G. Riontino andG. Venturello,Scripta Metall 12 (1978) 1011.

  32. 32.

    A. Inoue, Y. Takahashi, C. Suryanarayana, T. Masumoto,J. Mater. Sci. 17 (1982) 3253.

  33. 33.

    Z. Altounian, T. Guo-Hua andJ. O. Stromolsen,J. Appl. Phys. 53 (1982) 4755.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Matusita, K., Komatsu, T. & Yokota, R. Kinetics of non-isothermal crystallization process and activation energy for crystal growth in amorphous materials. J Mater Sci 19, 291–296 (1984). https://doi.org/10.1007/BF00553020

Download citation

Keywords

  • Polymer
  • Crystallization
  • Activation Energy
  • Thermal Analysis
  • Crystal Growth