Thermoelasticity, pseudoelasticity and the memory effects associated with martensitic transformations
Part 1 Structural and microstructural changes associated with the transformations
Review
Received:
Accepted:
- 747 Downloads
- 283 Citations
Abstract
The literature pertaining to the microstructural and crystallographic features of thermoelasticity, pseudoelasticity and memory effects associated with martensitic transformations is reviewed. The interrelations between the various effects are described. An introduction to the mechanical behaviour and the thermodynamic parameters is given.
Keywords
Polymer Mechanical Behaviour Thermodynamic Parameter Martensitic Transformation Memory Effect
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.
- 2.
- 3.
- 4.
- 5.F. Laves,ibid 9 (1965) 58.Google Scholar
- 6.
- 7.
- 8.
- 9.E. Scheil,Z. Anorg. Allg. Chem. 207 (1932) 21.Google Scholar
- 10.
- 11.
- 12.
- 13.
- 14.F. E. Wang,ibid 43 (1972) 92.Google Scholar
- 15.
- 16.R. J. Wasilewski,Met. Trans. 2 (1971) 2973.Google Scholar
- 17.A. Nagasawa,J. Phys. Soc. Japan 31 (1971) 136.Google Scholar
- 18.Idem, Phys. Stat. Sol. (a)8 (1971) 531.Google Scholar
- 19.
- 20.H. Pops,Met. Trans. 1 (1970) 251.Google Scholar
- 21.
- 22.
- 23.
- 24.J. Perkins, to be published.Met. Trans. 4 (1973) 2709.Google Scholar
- 25.N. Nakanishi,Mémoirs of the Kônan University, Science Series 15 Art. 77 (1972).Google Scholar
- 26.D. S. Lieberman, “Phase Transformations”, (A.S.M., Cleveland, Ohio, 1970) p. 7.Google Scholar
- 27.
- 28.
- 29.
- 30.R. V. Krishnan andL. C. Brown,Met. Trans. 4 (1973) 432; andR. V. Krishnan, Ph.D. Thesis, University of British Columbia, Canada (1971).Google Scholar
- 31.
- 32.
- 33.H. Tas, L. Delaey andA. Deruyttère,Scripta Met. 5 (1971) 1117;Z. Metallk. 64 (1973) 855, 862.Google Scholar
- 34.
- 35.
- 36.
- 37.
- 38.C. M. Wayman,Scripta Met. 5 (1971) 489.Google Scholar
- 39.G. V. Kurdjumov,J. Techn. Phys. U.S.S.R. 18 (1948) 999.Google Scholar
- 40.
- 41.D. Hull andR. D. Garwood, “The Mechanism of Phase Transformations in Metals” (The Institute of Metals Monograph and Report Series No. 18, London, 1956) p. 219.Google Scholar
- 42.H. Pops,Trans. Met. Soc. AIME 236 (1966) 1532.Google Scholar
- 43.Idem, ibid,239 (1967) 756.Google Scholar
- 44.
- 45.
- 46.
- 47.
- 48.
- 49.
- 50.
- 51.W. A. Rachinger,J. Australian Inst. Metals 5 (1960) 114.Google Scholar
- 52.
- 53.W. A. Rachinger,Brit. J. Appl. Phys. 9 (1958) 250.Google Scholar
- 54.
- 55.
- 56.C. Baker,Mat. Sci. J. 5 (1971) 92.Google Scholar
- 57.
- 58.
- 59.
- 60.
- 61.A. Nagasawa,J. Phys. Soc. Japan 30 (1971) 1505.Google Scholar
- 62.
- 63.
- 64.
- 65.A. Nagasawa,J. Phys. Soc. Japan 30 (1971) 1200.Google Scholar
- 66.
- 67.
- 68.I. A. Arbuzova, V. S. Gavril'yuk andL. G. Khandros,Fiz. Metal. Metalloved. 30 (1970) 181;27 (1969) 1126.Google Scholar
- 69.
- 70.
- 71.
- 72.
- 73.
- 74.
- 75.
- 76.H. Schumann,Kristall und Technik,9 (1974) 281.Google Scholar
- 77.Idem, ibid,9 (1974) 33.Google Scholar
Copyright information
© Chapman and Hall Ltd 1974