Advertisement

Journal of Materials Science

, Volume 9, Issue 9, pp 1409–1419 | Cite as

Temperature effects in the fracture of PMMA

  • G. P. Marshall
  • L. H. Coutts
  • J. G. Williams
Papers

Abstract

Experiments are described in which the fracture toughness,Kc, of PMMA has been determined in the temperature range −190 to + 80° C and over the crack speed range of 10−2 to 102 mm sec−1. Single edge notch tension was used for instability measurements but the other data were obtained using the double torsion method. In the range −80 to + 80°C the variations inKc may be described in terms of modulus changes and a constant crack opening displacement criterion. Crack instabilities are correlated with isothermal-adiabatic transitions at the crack tip. Below −80° C there is an inverted rate dependence associated with thermal effects during post-instability crack propagation.

Keywords

Fracture Toughness PMMA Single Edge Crack Speed Instability Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. P. Marshall andJ. G. Williams,J. Mater. Sci. 8 (1973) 138.Google Scholar
  2. 2.
    J. P. Berry,J. Polymer Sci. A1 (1963) 993.Google Scholar
  3. 3.
    P. L. Key, Y. Katz andE. R. Parker,Sci. Tech. and Aero. Rept. (N68-29464) p. 2904 — NASA (UCRL-17911) (1968).Google Scholar
  4. 4.
    F. A. Johnson andJ. C. Radon,Eng. Fracture Mechs. 4 (1972) 555.Google Scholar
  5. 5.
    L. J. Broutman andF. J. McGarry,J. Appl. Polymer Sci. 9 (1965) 589.Google Scholar
  6. 6.
    J. J. Benbow,Proc. Phys. Soc. (London) 78 (1961) 5.Google Scholar
  7. 7.
    N. L. Svennson,Proc. Phys. Soc. (London) 77 (1961) 876.Google Scholar
  8. 8.
    J. P. Berry,J. Appl. Phys. 33 (1962) 741.Google Scholar
  9. 9.
    G. P. Marshall, L. E. Culver andJ. G. Williams,Plastics and Polymers, February (1969) 75.Google Scholar
  10. 10.
    H. F. Brown andJ. E. Srawley,A.S.T.M., S.T.P. 410 (1966).Google Scholar
  11. 11.
    N. G. McCrum, B. E. Read andG. Williams, “Anelastic and dielectric effects in polymeric solids” (Wiley, New York, 1967).Google Scholar
  12. 12.
    J. G. Williams,Int. J. Fracture Mechs. 8 (1972) 393.Google Scholar
  13. 13.
    P. D. Olear andF. Erdogan,J. Appl. Polymer Sci. 12 (1968) 2563.Google Scholar
  14. 14.
    J. G. Williams andG. P. Marshall, to be published inProc. Roy. Soc. (1974).Google Scholar
  15. 15.
    J. G. Williams,Appl Materials Res. April (1965) 104.Google Scholar
  16. 16.
    J. G. Williams, J. C. Radon andC. E. Turner,Polymer Eng. and Sci. April (1968) 130.Google Scholar
  17. 17.
    R. P. Kambour andR. E. Barker Jun,J. Polymer Sci. A2 (1966) 4.Google Scholar
  18. 18.
    H. S. Carslaw andJ. G. Jaeger, “Conduction of Heat in Solids”, 2nd Edn (Oxford University Press, 1959).Google Scholar
  19. 19.
    N. Levy andJ. R. Rice, “Physics of Plasticity and Fracture” (M.I.T. Press, Cambridge, Mass., 1969–70).Google Scholar

Copyright information

© Chapman and Hall Ltd 1974

Authors and Affiliations

  • G. P. Marshall
    • 1
  • L. H. Coutts
    • 1
  • J. G. Williams
    • 1
  1. 1.Mechanical Engineering DepartmentImperial CollegeLondonUK

Personalised recommendations