Journal of Materials Science

, Volume 15, Issue 1, pp 114–118 | Cite as

Solid state reactions in the ZrO2 · SiO2 - αAl2O3 system

  • E. Di Rupo
  • M. R. Anseau


Solid state reactions between ZrO2· SiO2 and αAl2O3 in mixed powders were studied by quantitative X-ray diffraction, density measurements and qualitative EDAX. Data were obtained at temperatures ranging from 1400 to 1600° C for 5 h; the initial molar ratios of the reactants (Al2O3/ZrO2 · SiO2) varying from 0 to 5. The results indicate that: (1) ZrO2· SiO2 and αAl2O3 react and form ZrO2, crystalline 3Al2O3 · 2SiO2 and a noncrystalline mullite phase; (2) the non-crystalline mullite phase is an important transitional phase towards equilibrium under subsolidus conditions. In the experimental conditions used the amount of the non-crystalline phase varies by as much as about 15%. This phase is of great importance in the mechanisms of reaction sintering between ZrO2 · SiO2 and αAl2O3.


Polymer SiO2 Transitional Phase Solid State Solid State Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. J. Baldwin, in “High Temperature Oxides”, edited by A. M. Alper (Academic Press, New York, 1970).Google Scholar
  2. 2.
    C. E. Curtis and H. G. Sowman, J. Amer. Ceram. Soc. 36 (1953) 190.Google Scholar
  3. 3.
    W. C. Butterman and W. R. Foster, Amer. Mineral. 52 (1967) 880.Google Scholar
  4. 4.
    S. V. Ramani, E. C. Subbarao and K. V. G. K. Gokaale, J. Amer. Ceram. Soc. 52 (1969) 619.Google Scholar
  5. 5.
    M. R. Anseau, J. P. Biloque and P. Fierens, J. Mater. Sci. 11 (1976) 578.Google Scholar
  6. 6.
    F. M. Wahl, R. E. Grim and R. B. Graf, Amer. Mineral. 46 (1961) 1064.Google Scholar
  7. 7.
    W. G. Staley and G. W. Brindly, J. Amer. Ceram. Soc. 52 (1969) 616.Google Scholar
  8. 8.
    R. F. Davis and J. A. Pask, ibid 55 (1972) 525.Google Scholar
  9. 9.
    S. Aramaki and R. Roy, ibid 45 (1962) 229.Google Scholar
  10. 10.
    R. F. Davis and J. A. Pask, in “Mullite” (Academic Press, New York, 1971) p. 38.Google Scholar
  11. 11.
    S. H. Risbud and J. A. Pask, J. Mater. Sci. 13 (1978) 2449.Google Scholar
  12. 12.
    S. H. Risbud, V. F. Draper and J. A. Pask, J. Amer. Ceram. Soc. 61 (1978) 470.Google Scholar
  13. 13.
    E. A. Thomas, U.S. Patent 90229 (1961).Google Scholar
  14. 14.
    E. Di Rupo, M. R. Anseau, J. P. Biloque and P. Fierens, Belgian Patent 181 362 (1977).Google Scholar
  15. 15.
    J. P. Holt, T. P. Cash and D. B. Day, U.S. Patent 3 972 722(1976).Google Scholar
  16. 16.
    K. Shaw, “Refractories and their Uses” (Applied Science, London, 1972) p. 238.Google Scholar
  17. 17.
    K. Miyatake, K. Semba and M. Sekime, Taikabutsu 21 (1969) 105.Google Scholar
  18. 18.
    A. Kobayashi and T. Oyama, ibid 29 (1971) 54.Google Scholar
  19. 19.
    E. Di Rupo, M. R. Anseau and R. J. Brook, J. Mater. Sci. 14 (1979) 2924.Google Scholar
  20. 20.
    V. Balek, J. Mater. Sci. 5 (1970) 714.Google Scholar
  21. 21.
    P. P. Budnikov and A. A. Litvakovskii, Dokl. Akad. Nauk. S.S.S.R. 106 (1956) 267.Google Scholar
  22. 22.
    E. M. Levin, C. E. Robbins and H. F. MacMurdie, “Phase Diagrams for Ceramics” (The American Ceramic Society, Columbus, 1964) pp. 156,181, 219, 241, 246; p. 64 (1969).Google Scholar
  23. 23.
    E. Di Rupo, Ph.D. Thesis, University of Mons (1978).Google Scholar
  24. 24.
    E. Di Rupo, T. G. Carruthers and R. J. Brook, J. Amer. Ceram. Soc. 61 (1978) 468.Google Scholar
  25. 25.
    E. Di Rupo, E. Gilbart, T. G. Carruthers and R. J. Brook, J. Mater. Sci. 14 (1979) 705.Google Scholar
  26. 26.
    W. D. Kingery, J. Appl. Phys. 30 (1959) 301.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1980

Authors and Affiliations

  • E. Di Rupo
    • 1
  • M. R. Anseau
    • 1
  1. 1.Department of Materials ScienceUniversity of MonsMonsBelgium

Personalised recommendations