Advertisement

Journal of Materials Science

, Volume 12, Issue 11, pp 2195–2199 | Cite as

A model for crack initiation in elastic/plastic indentation fields

  • B. R. Lawn
  • A. G. Evans
Papers

Abstract

A model is proposed for the initiation of microfracture beneath sharp indenters. Using a simple approximation for the tensile stress distribution in the elastic/plastic indentation field, in conjunction with the principle of geometrical similarity, fracture mechanics procedures are applied to determine critical conditions for the growth of penny-like “median cracks” from sub-surface flaws. The analysis provides a functional relationship between the size of the critical flaw and the indentation load necessary to make this flaw extend. Initiation is well defined (unstable) only if the critical flaw lies within a certain size range; outside this range, large flaws can extend stably but small flaws can not extend at all. No flaws can extend below a characteristic minimum load, values of the indentation variables at this load accordingly providing useful threshold parameters. These quantities involve the intrinsic deformation/fracture parameters, hardness and toughness, in a fundamental way, thereby establishing a basis for materials selection in fracture-sensitive applications.

Keywords

Tensile Stress Stress Distribution Crack Initiation Simple Approximation Large Flaw 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. R. Lawn andT. R. Wilshaw,J. Mater. Sci. 10 (1975) 1049.Google Scholar
  2. 2.
    A. G. Evans andT. R. Wilshaw,Acta. Met. 24 (1976) 939.Google Scholar
  3. 3.
    Idem, J. Mater. Sci.,12 (1977) 97.Google Scholar
  4. 4.
    F. C. Frank andB. R. Lawn,Proc. Roy. Soc. Lond. A299 (1967) 291.Google Scholar
  5. 5.
    B. R. Lawn andM. V. Swain,J. Mater. Sci. 10 (1975) 113.Google Scholar
  6. 6.
    B. R. Lawn andE. R. Fuller,ibid. 10 (1975) 2016.Google Scholar
  7. 7.
    B. R. Lawn, T. Jensen andA. Arora,ibid. 11 (1976) 575.Google Scholar
  8. 8.
    A. G. Evans andE. A. Charles,J. Amer. Ceram. Soc. 59 (1976) 371.Google Scholar
  9. 9.
    R. Hill, “Plasticity” (Clarendon Press, Oxford, 1950) p. 97.Google Scholar
  10. 10.
    D. Tabor, “The Hardness of Metals” (Clarendon Press, Oxford, 1951).Google Scholar
  11. 11.
    G. C. Sih, “Handbook of Stress Intensity Factors” (Lehigh University Press, Lehigh, 1973).Google Scholar
  12. 12.
    B. R. Lawn andT. R. Wilshaw, “Fracture of Brittle Solids” (Cambridge University Press, Cambridge, 1975) Chs. 1–3.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1977

Authors and Affiliations

  • B. R. Lawn
    • 1
  • A. G. Evans
    • 2
  1. 1.Department of Applied PhysicsUniversity of New South WalesKensingtonAustralia
  2. 2.Science CenterRockwell InternationalThousand OaksUSA

Personalised recommendations