Advertisement

Journal of Materials Science

, Volume 15, Issue 4, pp 1001–1013 | Cite as

Microhardness anisotropy of silicon carbide

  • G. R. Sawyer
  • P. M. Sargent
  • T. F. Page
Papers

Abstract

The effect of crystallographic anisotropy on the room-temperature Knoop microhardness of silicon carbide has been studied on each of three major sections of alpha single crystals (namely: {0 0 0 1}, {1 ¯1 0 0} and {1 1 ¯2 0}), measurements being made at 10° angular intervals over a range sufficient to include all the non-equivalent indenter orientations on each crystal section. The results are presented graphically and compared with a number of possible anisotropies computed for different slip systems using a model based on the effective resolved shear stress (ERSS) model of Brookes et al. [1] with a modification suggested by Arnell [2]. The results are interpreted to show that plastic deformation appears to occur preferentially on the {1 ¯1 0 0}〈1 1 ¯2 0〉 and {0 0 0 1}〈1 1 ¯2 0〉 slip systems over different ranges of orientations of the indenter. Further, it has been possible to estimate the ratio of the critical resolved shear stresses of these systems, the {0 0 0 1} 〈1 1 ¯2 0〉 system having a CRSS between 1.2 and 2.1 times that of the {1 ¯1 0 0}〈1 1 ¯2 0〉 system. Computation has also been used to investigate the detailed effect of the form of Brookes' constraint factor and the reliability of hardness anisotropies predicted in this way. The possible roles of slip and other deformation mechanisms in governing the response of brittle solids subjected to indentation hardness tests are also discussed.

Keywords

Anisotropy Silicon Carbide Deformation Mechanism Slip System Hardness Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. A. Brookes, J. B. O'neill and B. A. W. Redfern, Proc. Roy. Soc. London A322 (1971) 73.Google Scholar
  2. 2.
    R. D. Arnell, J. Phys. D. 7 (1974) 1225.Google Scholar
  3. 3.
    G. Morgan and M. H. Lewis, J. Mater. Sci. 9 (1974) 349.Google Scholar
  4. 4.
    B. J. Hockey, “The Science of Hardness Testing and its Research Applications” (American Society for Metals, Metals Park, Ohio, 1973) p. 21.Google Scholar
  5. 5.
    Y. Humashiro, A. Itoh, T. Kinoshita and M. Sobajina, J. Mater. Sci. 12 (1977) 595.Google Scholar
  6. 6.
    D. J. Rowcliffe and G. E. Hollox, ibid 6 (1971) 1261.Google Scholar
  7. 7.
    Idem, ibid 6 (1971) 1270.Google Scholar
  8. 8.
    R. H. J. Hannink, D. L. Kohlstedt and M. J. Murray, Proc. Roy. Soc. London A326 (1972) 409.Google Scholar
  9. 9.
    D. M. Marsh, ibid A279 (1964) 420.Google Scholar
  10. 10.
    O. O. Adewoye, Ph.D. Thesis, University of Cambridge (1976).Google Scholar
  11. 11.
    G. R. Sawyer, Ph.D. Thesis, University of Cambridge (1979) in preparation.Google Scholar
  12. 12.
    A. W. Ruff and S. M. Wiederhorn, in “Materials Erosion”, Treatise on Materials Science and Technology, Vol. 16, edited by C. M. Preece (Academic Press, New York, 1979) ch. 2.Google Scholar
  13. 13.
    O. O. Adewoye and T. F. Page, J. Mater. Sci. 11 (1976) 981.Google Scholar
  14. 14.
    T. F. Page, G. R. Sawyer, O. O. Adewoye and J. J. Wert, Proc. Brit. Ceram. Soc. 26 (1978) 193.Google Scholar
  15. 15.
    P. T. B. Shaffer, J. Amer. Ceram. Soc. 47 (1964) 466.Google Scholar
  16. 16.
    P. Haason, J. de Physique: Dissociation des Dislocations, Beaune, Colloque 7 (1974) 167.Google Scholar
  17. 17.
    V. I. Zaitsev, V. I. Barbashov and Yu. B. Tkachenko. Phys. Stat. Sol. A44 (1977) K39.Google Scholar
  18. 18.
    B. R. Lawn and R. Wilshaw, J. Mater. Sci. 10 (1975) 1049.Google Scholar
  19. 19.
    J. J. Gilman, “The Science of Hardness Testing and its Research Applications” (American Society for Metals, Metals Park, Ohio, 1973) p. 54.Google Scholar
  20. 20.
    I. V. Gridneva, Yu. V. Milman and V. I. Trefilov, Phys. Stat. Sol. A14 (1972) 177.Google Scholar
  21. 21.
    J. A. Van Vechten, Phys. Rev. B7 (1973) 1479.Google Scholar
  22. 22.
    V. I. Trefilov, V. A. Borisenko, G. G. Gnesin, I. V. Gridneva and Yu. V. Milman, Dokl. Akad. Nauk. SSSR 239 (1977) 579 (in Russian).Google Scholar
  23. 23.
    M. A. Velednitskaya, V. N. Rozhanskii, L. F. Comolova, G. V. Saparin, J. Schreiber and O. Brummer, Phys. Stat. Sol. A32 (1975) 123.Google Scholar
  24. 24.
    V. N. Rozhanskii, M. P. Nazarova, I. L. Svetlov and L. K. Kalashnikova, ibid 41 (1970) 579.Google Scholar
  25. 25.
    P. M. Sargent and T. F. Page, Proc. Brit. Ceram. Soc. 26 (1978) 209.Google Scholar
  26. 26.
    D. Tabor, Rev. Phys. Technol. 1 (1970) 145.Google Scholar
  27. 27.
    J. W. Edington, D. J. Rowcliffe and J. L. Henshall, Powder Met. Int. 7 (1975) 82.Google Scholar
  28. 28.
    R. C. Marshall, J. W. Faust and C. E. Ryan (ed.), “Silicon Carbide 1973”, Proceedings of the Conference, Miami Beach (University of South Carolina Press, Columbia, South Carolina, 1974).Google Scholar
  29. 29.
    B. J. Hockey and B. R. Lawn, J. Mater. Sci. 10 (1975) 1275.Google Scholar
  30. 30.
    B. J. Hockey, S. M. Wiederhorn and H. Johnson, in “Fracture Mechanics of Ceramics”, Vol. 3, edited by R. C. Bradt, D. P. H. Hasselmann and F. F. Lange (Plenum, New York, 1978) p. 379.Google Scholar
  31. 31.
    R. W. Armstrong and C. Cu. Wu, J. Amer. Ceram. Soc. 61 (1978) 102.Google Scholar
  32. 32.
    E. B. Leiko, A. Luft and E. M. Nadgornii, Phys. Stat. Sol. A44 (1977) 285.Google Scholar
  33. 33.
    T. F. Page and J. J. Wert, unpublished work.Google Scholar
  34. 34.
    R. P. Burnand, Ph.D. Thesis, University of Exeter (1972).Google Scholar
  35. 35.
    K. L. Johnson, J. Mech. Phys. Sol. 18 (1970) 115.Google Scholar
  36. 36.
    C. J. Studman, M. A. Moore and S. E. Jones, J. Phys. D. 10 (1977) 949.Google Scholar
  37. 37.
    M. A. Moore, Ph.D. Thesis, University of Newcastle (1974).Google Scholar
  38. 38.
    C. J. Studman and J. E. Field, J. Phys. D. 9 (1976) 857.Google Scholar
  39. 39.
    R. D. Carnahan, J. Amer. Ceram. Soc. 51 (1968) 223.Google Scholar
  40. 40.
    P. T. B. Shaffer and C. K. Jin, Mat. Res. Bull. 7 (1972) 63.Google Scholar
  41. 41.
    C. A. Brookes, R. P. Burnand and J. E. Morgan, J Mater. Sci. 10 (1975) 2171.Google Scholar
  42. 42.
    Yu. S. Boyarskaya and D. Z. Grabko, Kristall und Technik 8 (1973) 1367.Google Scholar
  43. 43.
    R. W. Calder and R. W. Armstrong, Mater. Sci. Eng. 12 (1973) 59.Google Scholar
  44. 44.
    R. W. Armstrong and A. C. Raghuram, “The Science of Hardness Testing and irs Research Applications” (American Society for Metals, Metals Park, Ohio, 1973) p. 175.Google Scholar
  45. 45.
    F. W. Daniels and C. G. Dunn, Trans. Amer. Soc. Metals 41 (1949) 419.Google Scholar
  46. 46.
    Y. Tung and J. W. Faust Jr, in “Silicon Carbide 1973”, Proceedings of the Conference, Miami Beach (University of South Carolina Press, Columbia, South Carolina, 1974) p. 246.Google Scholar
  47. 47.
    G. R. Sawyer and T. F. Page, J. Mater. Sci. 13 (1978) 865.Google Scholar
  48. 48.
    N. W. Thibalt and H. L. Nyquist, Trans. Amer. Soc. Metals 38 (1947) 271.Google Scholar
  49. 49.
    P. M. Sargent and G. R. Sawyer, unpublished work.Google Scholar
  50. 50.
    P. M. Sargent, unpublished work.Google Scholar

Copyright information

© Chapman and Hall Ltd 1980

Authors and Affiliations

  • G. R. Sawyer
    • 1
  • P. M. Sargent
    • 1
  • T. F. Page
    • 1
  1. 1.Department of Metallurgy and Materials ScienceCambridgeUK

Personalised recommendations