Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Atomically sharp cracks in brittle solids: an electron microscopy study

  • 339 Accesses

  • 179 Citations

Abstract

The issue of bond rupture versus microplasticity as an essential mechanism of crack propagation in brittle solids is addressed. A detailed survey of existing theoretical and experimental evidence relating to this issue highlights the need for direct observations of events within the crack-tip “process zone”, at a level approaching 10 nm. Transmission electron microscopy is accordingly used to study arrested cracks about sharp-contact (Vickers indentation and particle impact) sites in Si, Ge, SiC and Al2O3. The nature of the deformation which accommodates the irreversible contact impression is first investigated, in the light of Marsh's proposal of an “equivalence” between indentation and crack-tip zone processes. Interfacial and tip regions of the surrounding cracks are then examined for any trace of a plasticity-controlled fracture process. Dislocation-like images are indeed evident at the crack planes, but these are shown to be totally inconsistent with any conventional slip mechanism. The close connection between the dislocation patterns and moiré fringe systems along the cracks points to “lattice mismatch” contrast in association with a partial closure and healing operation at the interface. Analysis of all other details in the crack patterns, e.g. the presence of a crack-front contrast band indicative of a residual strain field and the disposition of interfacial fracture steps relative to the dislocation/moiré system, reinforces this interpretation. It is concluded that the concept of an atomically sharp crack provides a sound basis for the theory of fracture of brittle solids.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    “Fracture Mechanics of Ceramics”, edited by R. C. Bradt, D. P. H. Hasselman and F. F. Lange, Vols. 1 to 4 (Plenum, New York, 1974, 1978).

  2. 2.

    R. Thomson, Ann. Rev. Mat. Sci. 3 (1973) 31.

  3. 3.

    D. M. Marsh, Proc. Roy. Soc. A279 (1974) 420.

  4. 4.

    B. J. Hockey and B. R. Lawn, J. Mater. Sci. 10 (1975) 1275.

  5. 5.

    B. R. Lawn and T. R. Wilshaw, “Fracture of Brittle Solids” (Cambridge University Press, London, 1975).

  6. 6.

    G. R. Irwin, “Handbook of Physics”, Vol. 6 (Springer, Berlin, 1958) p. 551.

  7. 7.

    A. A. Griffith, Phil. Trans. A221 (1920) 163.

  8. 8.

    D. S. Dugdale, J. Mech. Phys. Solids 8 (1960) 100.

  9. 9.

    G. I. Barenblatt, Adv. Appl. Mech. 7 (1962) 55.

  10. 10.

    N. J. Petch, “Fracture”, edited by H. Liebowitz, Vol. 1, (Academic Press, New York, 1968) Ch. 5.

  11. 11.

    W. B. Hillig, “Microplasticity”, edited by C. J. McMahon (Interscience, New York, 1968) p. 383.

  12. 12.

    S. M. Wiederhorn, B. J. Hockey and D. E. Roberts, Phil. Mag. 28 (1973) 783.

  13. 13.

    A. Kelly, W. R. Tyson and A. H. Cottrell, Phil. Mag. 15 (1967) 576.

  14. 14.

    J. R. Rice and R. Thomson, Phil. Mag. 29 (1974) 73.

  15. 15.

    R. Thomson, C. Hsieh and V. Rana, J. Appl. Phys. 42 (1971) 3154.

  16. 16.

    C. Hsieh and R. Thomson, ibid. 44 (1973) 2051.

  17. 17.

    J. E. Sinclair and B. R. Lawn, Proc. Roy. Soc. A329 (1972) 83.

  18. 18.

    J. E. Sinclair, J. Phys. C: Solid State 5 (1972) L271.

  19. 19.

    M. F. Kanninen and P. C. Gehlen, Int. J. Fract. Mech. 7 (1971) 471.

  20. 20.

    R. Thomson, “The Mechanics of Fracture”, edited by F. Erdogan, Vol. 19 (American Society of Mechanical Engineers, New York, 1977) p. 1.

  21. 21.

    R. Thomson, J. Mater. Sci. 13 (1978) 128.

  22. 22.

    B. R. Lawn, ibid. 10 (1975) 469.

  23. 23.

    J. R. Rice, J. Mech. Phys. Solids 26 (1978) 61.

  24. 24.

    M. V. Swain, B. R. Lawn and S. J. Burns, J. Mater. Sci. 9 (1974) 175.

  25. 25.

    J. Gilman, Trans. Met. Soc. AIME 212 (1958) 310.

  26. 26.

    S. J. Burns and W. W. Webb, ibid. 236 (1966) 1165.

  27. 27.

    Idem, J. Appl. Phys. 41 (1970) 2078, 2086.

  28. 28.

    B. R. Lawn and M. V. Swain, J. Mater. Sci. 10 (1975) 113.

  29. 29.

    G. W. Weidmann and D. G. Holloway, Phys. Chem. Glasses 15 (1974) 68.

  30. 30.

    J. G. Williams and G. P. Marshall, Proc. Roy. Soc. A342 (1975) 55.

  31. 31.

    S. P. Gunasekera and D. G. Holloway, Phys. Chem. Glasses 14 (1973) 45.

  32. 32.

    R. E. Hanneman and J. H. Westbrook, Phil. Mag. 18 (1968) 73.

  33. 33.

    F. M. Ernsberger, J. Amer. Ceram. Soc. 51 (1968) 545.

  34. 34.

    J. E. Neely and J. D. Mackenzie, J. Mater. Soc. 3 (1968) 603.

  35. 35.

    B. J. Hockey, unpublished work.

  36. 36.

    Idem, J. Amer. Ceram. Soc. 54 (1971) 223.

  37. 37.

    Idem, “Science of Hardness Testing and its Research Applications”, edited by J. H. Westbrook and H. Conrad (American Society for Metals, Metals Park, Ohio, 1973) Ch. 30.

  38. 38.

    B. J. Hockey, S. M. Wiederhorn and H. Johnson, “Fracture Mechanics of Ceramics”, Vol. 3 (Plenum, New York, 1978).

  39. 39.

    V. G. Eremenko and V. I. Nikitenko, Phys. Stat. Sol (a) 14 (1972) 317.

  40. 40.

    M. J. Hill and D. J. Rowcliffe, J. Mater. Sci. 9 (1974) 1569.

  41. 41.

    A. S. Keh, J. Appl. Phys. 31 (1960) 1538.

  42. 42.

    B. R. Lawn and T. R. Wilshaw, J. Mater. Sci. 10 (1975) 1049.

  43. 43.

    A. G. Evans and T. R. Wilshaw, Acta Met. 24 (1976) 939.

  44. 44.

    L. E. Murr and W. A. Szilva, J. Mater. Sci. 10 (1975) 1536.

  45. 45.

    J. S. Williams, B. R. Lawn and M. V. Swain, Phys. Stat. Sol. (a) 2 (1970) 7.

  46. 46.

    M. V. Swain, J. Mater. Sci. 11 (1976) 2345.

  47. 47.

    H. Alexander and P. Haasen, “Solid State Physics”, Vol. 22, edited by F. Seitz and D. Turnbull (Academic Press, New York, 1968) p. 27.

  48. 48.

    R. W. Baluffi, Y. Komen and T. Schober, Surf. Sci. 31 (1972) 68.

  49. 49.

    S. M. Wiederhorn and P. R. Townsend, J. Amer. Ceram. Soc. 53 (1970) 486.

  50. 50.

    I. V. Gridneva, Yu V. Milman and V. I. Trefilov, Phys. Stat. Sol. (a) 14 (1972) 317.

  51. 51.

    S. M. Wiederhorn and L. H. Bolz, J. Amer. Ceram. Soc. 53 (1970) 543.

  52. 52.

    S. M. Wiederhorn, Int. J. Fract. Mech. 4 (1968) 171.

  53. 53.

    L. Pauling, “The Nature of the Chemical Bond” (Cornell University Press, Ithaca, 1960) Ch. 7.

  54. 54.

    R. J. Jaccodine, J. Electrochem. Soc. 110 (1963) 524.

  55. 55.

    J. L. Henshell, D. J. Rowcliffe and J. W. Edington, J. Amer. Ceram. Soc. 60 (1977) 373.

  56. 56.

    S. M. Wiederhorn, ibid. 52 (1969) 485.

  57. 57.

    Idem, ibid. 52 (1969) 99.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lawn, B.R., Hockey, B.J. & Wiederhorn, S.M. Atomically sharp cracks in brittle solids: an electron microscopy study. J Mater Sci 15, 1207–1223 (1980). https://doi.org/10.1007/BF00551810

Download citation

Keywords

  • Crack Pattern
  • Interfacial Fracture
  • Bond Rupture
  • Sharp Crack
  • Vickers Indentation