Theoretica chimica acta

, Volume 43, Issue 3, pp 261–271 | Cite as

On the calculation of multiplet energies by the hartree-fock-slater method

  • Tom Ziegler
  • Arvi Rauk
  • Evert J. Baerends
Original Investigations


It is shown that a consistent application of the p1/3 approximation of the Hartree-Fock-Slater method requires the use of one specific procedure, the sum method, for the calculation of the energy E s 1 of singlet excited states of closed shell molecules. Further, E s 1 is found to be in reasonable agreement with experiment for a number of molecules, contrary to the energy E s 2 obtained according to another method discussed in the literature. The calculation of other multiplet splittings than singlet-triplet in the Hartree-Fock-Slater method is also considered.

Key words

Multiplet energies Calculation by the Hartree-Fock-Slater method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Slater, J. C.: Advan. Quantum Chem. 6, 1 (1972)Google Scholar
  2. 2.
    Johnson, K. H., Norman, J. G., Jr., Connolly, J. W. D.: In: Computational methods for large molecules and localised states in solids, F. Herman, A. D. McLean, and R. K. Nesbet, Eds., p. 161. New York: Plenum Press 1973Google Scholar
  3. 3.
    Parameswaren, T., Ellis, D. E.: J. Chem. Phys. 58, 2088 (1973)Google Scholar
  4. 4.
    Bagus, P. S., Bennett, B. I.: Intern. J. Quantum Chem. 9, 143 (1975)Google Scholar
  5. 5.
    Baerends, E. J., Ellis, D. E., Ros, P.: Chem. Phys. 2, 52 (1973)Google Scholar
  6. 6.
    Roetti, C., Clementi, E.: J. Chem. Phys. 60, 4725 (1974)Google Scholar
  7. 7.
    Slater, J. C.: Quantum theory of molecules and solids, Vol. 4. New York: McGraw-Hill 1974Google Scholar
  8. 8.
    Herzberg, G.: Electronic spectra and electronic structure of polyatomic molecules. New York: Van Nostrand 1966Google Scholar
  9. 9.
    Merer, A. J., Mulliken, R. S.: Chem. Rev. 69, 639 (1969)Google Scholar
  10. 10.
    Shih, S., Buenker, R. J., Peyerimhoff, S. D.: Chem. Phys. Letters 16, 6042 (1969)Google Scholar
  11. 11.
    Meyer, V., Skerbele, A., Lassettre, E.: J. Chem. Phys. 43, 805 (1965)Google Scholar
  12. 12.
    Vanderslice, J. T., Tilford, S. G., Wilkinson, P. G.: Astrophys. J. 142, 1227 (1965)Google Scholar
  13. 13.
    Benesch, W., Saum, K. A.: J. Phys. B4, 732 (1971)Google Scholar
  14. 14.
    Katz, B., Brith, M., Ron, A., Sharf, A., Jortner, J.: Phys. Letters 2, 189 (1968)Google Scholar
  15. 15.
    Ballhausen, C. J., Dahl, J. P., Trabjerg, I.: National Na 191 Paris, 69 (1969)Google Scholar
  16. 16.
    For construction of the different multiplet wavefunctions due to a given configuration see: Koster, G. F., Dimmock, J., Wheeler, R. G., Statz, H.: Properties of the thirty-two point groups. Cambridge, Massachusetts: M.I.T. Press 1963Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Tom Ziegler
    • 1
  • Arvi Rauk
    • 1
  • Evert J. Baerends
    • 2
  1. 1.Department of ChemistryUniversity of CalgaryCalgaryCanada
  2. 2.Scheikundig Laboratorium Der Vrije UniversiteitAmsterdamThe Netherlands

Personalised recommendations