Theoretica chimica acta

, Volume 43, Issue 3, pp 239–251 | Cite as

Quantum mechanical approach to the chemisorption of molecular hydrogen on defect magnesium oxide surfaces

  • Jean -Marie André
  • Eric G. Derouane
  • Joseph G. Fripiat
  • Daniel P. Vercauteren
Original Investigations


Quantum mechanical theoretical calculations have been performed on the linear atomic chain \((MgOHV_{\ddot Mg} HOMg)^{2 + } \) in order to simulate the interaction of molecular hydrogen with the defects present at the surface of activated MgO. The total energy of the system, the relative energy of the various molecular orbitals, and the electronic charge distribution have been computed for various lattice parameters (dO-O = 4.0–4.8 Å) as a function of the H-H (or O-H) separation. A symmetrical motion of the hydrogen nuclei with respect to the central Mg2+ vacancy was assumed. It is shown that chemisorption of hydrogen on surface Oions sites results in the formation of pseudo-hydroxyl groups. For a small lattice parameter (4.0 Å), no stable state of molecular hydrogen has been found while an increase in the lattice parameter results in a uniform increase of the calculated activation energy for the molecular hydrogen activation process. A mechanism is proposed which is not so different from that put forward for the hydrogen activation by transition metal complexes. Molecular hydrogen is found to act as an electron donor.

Key words

Chemisorption of H2 to defect Mg oxide surfaces Hydrogen, chemisorption of to defect Mg oxide surfaces 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bond, G. C.: Catalysis by Metals, p. 155. New York: Academic Press 1962Google Scholar
  2. 2.
    Dowden, D. A., Mackenzie, N., Trapnell, B. M. W.: Advan. Catalysis Relat. Subj. 9, 65 (1957)Google Scholar
  3. 3.
    Halpern, J.: Accounts Chem. Res. 3, 386 (1970)Google Scholar
  4. 4.
    Boudart, M., Delbouille, A., Derouane, E. G., Indovina, V., Walters, A. B.: J. Chem. Soc. 94, 6622 (1972)Google Scholar
  5. 5.
    Derouane, E. G., Indovina, V., Walters, A. B., Boudart, M. in: Reactivity of solids, Proc. VIIth Intern. Symp., Bristol, 1972, p. 703. London: Chapman and Hall 1972Google Scholar
  6. 6.
    Gieseke, W., Nägerl, H., Freund, F.: J. Phys. Chem. 78, 758 (1974)Google Scholar
  7. 7.
    Gieseke, W., Derouane, E. G.: Chem. Phys. Letters, submitted for publicationGoogle Scholar
  8. 8.
    Derouane, E. G., Fripiat, J. G., André, J. M.: Chem. Phys. Letters 28, 445 (1974)Google Scholar
  9. 9.
    Freund, F.: see discussion following Ref. [5]in:Google Scholar
  10. 10.
    Kröger, F. A.: The chemistry of imperfect crystals, p. 192. Amsterdam: North-Holland 1964Google Scholar
  11. 11.
    Hehre, W. J., Lathan, W. A., Ditchfield, R., Newton, M. D., Pople, J. A.: Quantum Chemistry Program Exchange, Indiana University, 1973, QCPE N ° 236Google Scholar
  12. 12.
    Wyckoff, R.: Crystal structures. New York: Interscience 1963Google Scholar
  13. 13.
    Verbist, J., Dubruille, P.: private communication.Google Scholar
  14. 14.
    Cade, P. E.: J. Chem. Phys. 47, 2390 (1967)Google Scholar
  15. 15.
    Bader, R. F. W. in: The chemistry of hydroxyl groups, S. Patai (Ed.), p. 1. New York: Wiley 1971Google Scholar
  16. 16.
    Koopmans, T.: Physica 1, 104 (1933)Google Scholar
  17. 17.
    Handbook of chemistry and physics, 51st Ed. The Chemical Rubber Co., 1970–1971Google Scholar
  18. 18.
    Derouane, E. G., Fripiat, J. G., André, J. M.: Chem Phys. Letters 35, 525 (1975)Google Scholar
  19. 19.
    Osborn, J. A., Jardine, F. H., Young, J. F., Wilkinson, G.: J. Chem. Soc. A 1711 (1966)Google Scholar
  20. 20.
    Halpern, J.: Advan. Catalysis Relat. Subj. 11, 301 (1959)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Jean -Marie André
    • 1
  • Eric G. Derouane
    • 1
  • Joseph G. Fripiat
    • 1
  • Daniel P. Vercauteren
    • 1
  1. 1.Facultés Universitaires de Namur, Groupe de Chimie PhysiqueNamurBelgium

Personalised recommendations