Journal of Materials Science

, Volume 11, Issue 2, pp 215–223 | Cite as

The formation, structure and crystallization of non-crystalline nickel produced by splat-quenching

  • H. A. Davies
  • J. B. Hull


A non-crystalline phase has been formed in electron-transparent (0.1 to 0.5Μm thick) areas of splat-quenched foils of nickel. The positions in diffraction co-ordinates of the first two peaks and of a shoulder on the high-angle side of the second peak of the electron diffraction pattern agree closely with those for non-crystalline vapour-deposited Ni. The presence of the shoulder suggests that the structure is similar to that of dense random packed hard spheres, i.e. that it is amorphous rather than microcrystalline. The crystallization behaviour of the glassy phase studiedin situ in 1 MV electron microscope also supports this view. The crystallization temperature of about 150‡ C is unexpectedly high and suggests that stabilization by impurities (possibly up to 0.7 wt %) was occurring. The critical cooling rate for the formation of the glassy phase has been estimated from theories of homogeneous nucleation, crystal growth and transformation kinetics to be ∼1010 K sec−1 which is in satisfactory agreement with experimentally derived estimates of the maximum cooling rate in electron-transparent areas of foils.


Nickel Crystallization Cool Rate Electron Diffraction Crystallization Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Klement Jr. andP. Duwez,Nature 187 (1960) 869.Google Scholar
  2. 2.
    P. Ramachandrarao, M. Laridjani andR.W. Cahn,Z. Metallk. 63 (1972) 43.Google Scholar
  3. 3.
    H. A. Davies andJ. B. Hull,J. Mater. Sci. 9 (1974) 707.Google Scholar
  4. 4.
    J. B. Hull andH. A. Davies, Presented at the International Conference on Rapidly Quenched Alloys, November 1975.Google Scholar
  5. 5.
    S, Fujime,Jap. J. Appl. Phys. 6 (1967) 305.Google Scholar
  6. 6.
    J. R. Bosnell,Thin Solid Films 3 (1969) 233.Google Scholar
  7. 7.
    L. B. Davies andP. J. Grundy,Phys. Stat. Sol. A8 (1971) 189.Google Scholar
  8. 8.
    M. R. Bennett andJ. G. Wright,ibid. A13 (1972) 135.Google Scholar
  9. 9.
    R. T. Beyer andE. M. Ring, “Liquid Metals — Physics and Chemistry” edited by S.Z. Beer (Dekker, New York, 1972) p. 431.Google Scholar
  10. 10.
    H. Jones andC. Suryanarayana,J. Mater. Sci. 8 (1973) 705.Google Scholar
  11. 11.
    H. A. Davies, J. Aucote andJ. B. Hull,Nature-Phys. Sci. 246 (1973) 13.Google Scholar
  12. 12.
    P. Duwez andR. H. Willens,Trans. Met. Soc. AIME 227 (1963) 362.Google Scholar
  13. 13.
    C. H. Jansen, Ph.D. Thesis, MIT (1971).Google Scholar
  14. 14.
    Y. Waseda, K. Suzuki, S. Tamaki andS. Takeuchi,Phys. Stat. Sol. 39 (1970) 181.Google Scholar
  15. 15.
    J. L. Finney, Ph.D. Thesis, University of London (1968).Google Scholar
  16. 16.
    G. S. Cargill III,J. Appl. Phys. 41 (1970) 12, 2248.Google Scholar
  17. 17.
    B. C. Giessen andC. N. J. Wagner, “Liquid Metals — Physics and Chemistry”, edited by S.Z. Beer (Dekker, New York, 1972) p.633.Google Scholar
  18. 18.
    P. J. Grundy, S. S. Nandra andA. Ali, presented at Intermag Conference 1975.Google Scholar
  19. 19.
    M. Hansen, “Constitution of Binary Alloys” McGraw-Hill, New York, 1958) andR. P. Elliott, 1st Supplement (McGraw-Hill, New York, 1965).Google Scholar
  20. 20.
    C. W. Haworth, private communication.Google Scholar
  21. 21.
    T. B. Light,Phys. Rev. Letters 22 (1969) 999.Google Scholar
  22. 22.
    H. A. Davies, J. Aucote andJ. B. Hull,Scripta Met. 8 (1974) 1179.Google Scholar
  23. 23.
    H. A. Davies,J. Non-Cryst. Solids 17 (1975) 266Google Scholar
  24. 24.
    R. C. Ruhl,Mat. Sci. Eng. 1 (1967) 313.Google Scholar
  25. 25.
    P. Predecki, A. W. Mullendore andN. J. Grant,Trans. Met. Soc. AIME 233 (1965) 1581.Google Scholar
  26. 26.
    P. Duwez, “Phase Stability in Metals and Alloys” edited by P. S. Rudman, J. Stringer and R.I. Jaffee (McGraw-Hill, New York, 1967) p.523.Google Scholar
  27. 27.
    M. H. Burden andH. Jones,J. Inst. Metals 98 (1970) 249.Google Scholar
  28. 28.
    H. Matyja, B.C. Giessen andN. J. Grant,ibid,96 (1968) 30.Google Scholar
  29. 29.
    D. Turnbull,J. Appl. Phys. 21 (1950) 1022.Google Scholar
  30. 30.
    Idem., J. Physique, Supplement C-4 (1974) 1.Google Scholar
  31. 31.
    K. Tamura andH. Endo,Phys. Letters 29A (1969) 52.Google Scholar
  32. 32.
    L. B. Davies andP. J. Grundy, private communication.Google Scholar
  33. 33.
    P. K. Leung andJ. G. Wright,Phil Mag. 30 (1974) 995.Google Scholar
  34. 34.
    D. Turnbull,J. Chem. Phys. 18 (1950) 769.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1976

Authors and Affiliations

  • H. A. Davies
    • 1
  • J. B. Hull
    • 1
  1. 1.Department of MetallurgyUniversity of SheffieldSheffieldUK

Personalised recommendations