, Volume 57, Issue 3, pp 155–164 | Cite as

Distributional patterns of mesophilous and thermophilous microfungi in two bahamian soils

  • S. E. Gochenaur


This study focuses on the characteristics displayed by mesophilous and thermophilous microfungal populations occurring in two tropical monodominant plant communities, a Cocos nucifera grove and a Casuarina equisetifolia forest, that provide distinctly different edaphic conditions. The mesophilous population sampled at 25°C by the dilution plate method and the thermophilous population that developed on soil plates incubated at 45°C consisted of 1693 isolates representing 60 species and 29 genera and 8887 isolates representing 20 species and 10 genera, respectively. The mesophilous propagules averaged 9,990 per gram dry soil in the coconut grove that lacks a litter layer, is low in moisture and organic matter and is subjected to high solar irradiation. The population was characterized by the prevalence of aspergilli and dematiaceous-sphaeropsidaceous forms and the near absence of mucoraceous isolates. Ascomycetes were common. The only widespread taxa were the three species, Aspergillus niger, Penicillium chrysogenum, and Cladosporium cladosporioides. Species diversity was high and 73% of the isolates were cellulolytic. In the casuarina forest, adequate moisture and organic matter and a protecting litter layer provide a mesic environment. The mean number of mesophilous fungi per gram dry soil was 32,800. This figure is considerably lower than ones reported for mesic temperate communities and may be due to more rapid propagule removal through accelerated microfaunal and microbial activity. An abundance of mucoraceous and moniliaceous isolates and penicillia, and the rarity of aspergilli, dematiaceous-sphaeropsidaceous forms and ascomycetes characterize the population. The infrequency of aspergilli is thought to be due to their poor competitive ability. Eight species, Absidia cylindrospora, Penicillium notatum, Pestalotia cocculi?, Cylindrocarpon heteronema, Gliocladium roseum, Trichoderma viride, Paecilomyces marquandii, and Penicillium funiculosum were widespread in the area. Species diversity equaled that observed in mesic temperate communities. Less than one third of the isolates were cellulolytic. Phytopathogens were common, a feature characteristic of tropical populations. Thermophilous fungi averaged 33 per gram dry soil in the casuarina forest and increased to 943 per gram in the insolated soil of the coconut grove. Thermotolerant forms (94% of the isolates) were abundant and were principally species of Aspergillus and Chaetomium. Thermophilic fungi were rare and of the six species isolated only Chaetomiun britannicum was widespread. Four species, Ch. osmaniae, Ch. medusarum, Ch. sulphureum, and Thielavia arenaria, appear to be new records for western hemisphere soils.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Al-Doory, Y., K. Tolba & H. Al-Ani. 1959. On the fungal flora of Iraqi soils. II. Central Iraq. Mycologia 51: 429–439.Google Scholar
  2. 2.
    Apinis, A. E. 1963. Thermophilis fungi of coastal grasslands. p. 427–437. In: J. Doeksen & J. van der Drift (eds.), Soil Organisms. North-Holland Publ. Co., Amsterdam. 453 p.Google Scholar
  3. 3.
    Apinis, A. E. 1966. Thermophile Mikroorganismen in einigen Dauergrünlandgesellschaften. p. 290–303. In: R. Tüxen (ed.), Symp. Intern. Vereiningung für Vegetationskunde über Biosoziologie, 1960, Stolzenau/Weser, West Ger. W. Junk Publ., The Hague, Netherlands. 350 p.Google Scholar
  4. 4.
    Apinis, A. E. 1972. Thermophilous fungi in certain grasslands. Mycopath. Mycol. Appl. 48: 63–74.Google Scholar
  5. 5.
    Awao, T. & S. Otsuka. 1973. Notes on thermophilic fungi in Japan (2). Mycol. Soc. Japan Trans. 14: 221–236.Google Scholar
  6. 6.
    Borut, S. 1960. An ecological and physiological study on soil fungi of the Northern Negev (Israel). Bull. Res. Counc. Israel 8D: 65–80.Google Scholar
  7. 7.
    Britton, N. L. & C. F. Millspaugh. 1962. The Bahama Flora. Hafner Publ. Co., N.Y. 695 p.Google Scholar
  8. 8.
    Christensen, M. 1969. Soil microfungi of dry to mesic conifer-hardwood forests in northern Wisconsin. Ecology 50: 9–27.Google Scholar
  9. 9.
    Cooney, D. G. & R. Emerson. 1964. Thermophilic fungi, an account of their biology, activities, and classification. W. H. Freeman, San Francisco, Ca. 188 P.Google Scholar
  10. 10.
    Domsch, K. H. & W. Gams. 1972. Fungi in agricultural soils. (Transl. from German by P. Hudson) Longman Group Ltd., London. 290 p.Google Scholar
  11. 11.
    Eggins, H. O. W. & K. A. Malik. 1969. The occurrence of thermophilic cellulolytic fungi in a pasture land soil. Antonie van Leeuwenhoek 35: 178–184.Google Scholar
  12. 12.
    Evans, H. C. 1971. Thermophilous fungi of coal spoil tips. I. Taxonomy. Brit. Mycol. Soc. Trans. 57: 241–254.Google Scholar
  13. 13.
    Evans, H. C. 1971. Thermophilous fungi of coal spoil tips. II. Occurrence, distribution and temperature relationships. Brit. Mycol. Soc. Trans. 57: 255–266.Google Scholar
  14. 14.
    Gochenaur, S. E. 1964. A modification of the immersion tube method for isolating soil fungi. Mycologia 56: 921–923.Google Scholar
  15. 15.
    Gochenaur, S. E. 1970. Soil mycoflora of Peru. Mycopath. Mycol. Appl. 42: 259–272.Google Scholar
  16. 16.
    Gochenaur, S. E. & W. F. Whittingham. 1967. Mycoecology of willow and cottonwood lowland communities in southern Wisconsin. I. Soil microfungi in the willowcottonwood forests. Mycopath. Mycol. Appl. 33: 125–139.Google Scholar
  17. 17.
    Gochenaur, S. E. & M. P. Backus. 1967. Mycoecology of willow and cottonwood lowland communities in southern Wisconsin. II. Soil microfungi in the sandbar willow stands. Mycologia 59: 893–901.Google Scholar
  18. 18.
    Gochenaur, S. E. & G. M. Woodwell. 1974. The soil microfungi of a chronically irradiated oak-pine forest. Ecology 55: 1004–1016.Google Scholar
  19. 19.
    Griffin, D. M. 1972. Ecology of soil fungi. Chapman & Hall, London. 193 p.Google Scholar
  20. 20.
    Guba, E. F. 1961. Monograph of Monochaetia and Pestalotia. Harvard Univ. Press, Cambridge, Mass. 342 P.Google Scholar
  21. 21.
    Malaisse, F., R. Freson, G. Goffinet & M. Malaisse-Mousset. 1975. Litter fall and litter breakdown in Miombo. p. 137–152. In: F. Golley & E. Medina (eds.), Tropical Ecological Systems. Trends in Terrestrial and Aquatic Research. Springer-Verlag, N. Y. 398 p.Google Scholar
  22. 22.
    Moubasher, A. H. & A. F. Moustafa. 1970. A survey of Egyptian soil fungi with special reference to Aspergillus, Penicillium, and Penicillium-related genera. Brit. Mycol. Soc. Trans. 54: 35–44.Google Scholar
  23. 23.
    Mouchacca, J. & P. Joly. 1974. Etude de la mycoflore des sols arides de l'Egypte. I. Le genre Penicillium. Rev. Ecologie Biol. Sol 11: 67–88.Google Scholar
  24. 24.
    Nicot, J. 1960. Some characteristics of the microflora in desert sands, p. 94–97. In: D. Parkinson & J. S. Waid (eds.), The Ecology of Soil Fungi. Liverpool Univ. Press, Liverpool. 324 p.Google Scholar
  25. 25.
    Norkrans, B. 1963. Degradation of cellulose. Ann. Rev. Phytopathol. 1: 325–350.Google Scholar
  26. 26.
    Old, K. M. 1967. Effects of natural soil on survival of Cochliobolus sativus. Brit. Mycol. Soc. Trans. 50: 615–624.Google Scholar
  27. 27.
    Orpurt, P. A. & J. T. Curtis. 1957. Soil microfungi in relation to the prairie continuum in Wisconsin. Ecology 38: 628–637.Google Scholar
  28. 28.
    Peyronel, B. 1956. Considerazioni sulle micocenesi del suolo e sui metodi per studiarle. Allionia 3: 85–109.Google Scholar
  29. 29.
    Phelps, J. W. 1973. Microfungi in two Wisconsin sand blows. Brit. Mycol. Soc. Trans. 61: 386–390.Google Scholar
  30. 30.
    Piper, C. S. 1950. Soil and Plant Analysis. Interscience Publ. Inc., N.Y. 368 p.Google Scholar
  31. 31.
    Rai, J. N. & S. C. Agarwar. 1974. Increased osmotic tolerance of some aspergilli isolated from ’Usar’ (alkaline) soils — a possible indication of ecological specialization. Mycopath. Mycol. Appl. 52: 299–305.Google Scholar
  32. 32.
    Ranzoni, F. V. 1968. Fungi isolated in culture from soils of the Sonoran Desert. Mycologia 60: 356–371.Google Scholar
  33. 33.
    Rao, P. Rama & Ram Reddy. 1964. II. Additions to the ascomycetes from soil of Hyderabad (India). Mycopath. Mycol. Appl. 24: 113–118.Google Scholar
  34. 34.
    Rautela, G. & E. Cowling. 1966. Simple cultural test for relative cellulolytic activity of fungi. Appl. Microbiol. 14: 892–898.Google Scholar
  35. 35.
    Richards, B. N. 1974. Introduction to the soil ecosystem. Longman Inc., N. Y. 266 p.Google Scholar
  36. 36.
    Saksena, S. B. 1955. Ecological factors governing the distribution of soil microfungi in some forest soils of Sagar. J. Indian Bot. Soc. 34: 262–298.Google Scholar
  37. 37.
    Siu, R. G. H. 1951. Microbial decomposition of cellulose. Reinhold Publ. Co., N. Y. 531 p.Google Scholar
  38. 38.
    Tresner, H. D., M. P. Backus & J. T. Curtis. 1954. Soil microfungi in relation to the hardwood forest continuum in southern Wisconsin. Mycologia 46: 314–333.Google Scholar
  39. 39.
    Tresner, H. D., & J. Hayes. 1971. Sodium chloride tolerance of terrestrial fungi. Appl. Microbiol. 22: 210–213.Google Scholar
  40. 40.
    Tschirley, F. H., C. C. Dowler & J. Duke. 1970. Species diversity in two plant communities of Puerto Rico. p. B-91–B-96. In: H. Odum (ed.), A Tropical Rain Forest. A study of irradiation and ecology at El Verde, Puerto Rico. U. S. Atomic Energy Comm. Div. Tech. Info. Ex., Oak Ridge, Tenn.Google Scholar
  41. 41.
    Waksman, S. & C. Skinner. 1926. Microorganisms concerned in the decomposition of celluloses in the soil. J. Bacteriol. 12: 57–84.Google Scholar
  42. 42.
    Waksman, S., W. Umbreit & T. Cordon. 1939. Thermophilic actinomycetes and fungi in soils and in composts. Soil Science 47: 37–54.Google Scholar
  43. 43.
    Walseth, C. S. 1952. Occurrence of cellulases in enzyme preparations from microorganisms. Tappi 35: 228–233.Google Scholar
  44. 44.
    Ward, J. E., Jr., & G. T. Cowley. 1972. Thermophilic fungi of some central South Carolina forest soils. Mycologia 64: 200–205.Google Scholar

Copyright information

© Dr. W. Junk Publishers 1975

Authors and Affiliations

  • S. E. Gochenaur
    • 1
  1. 1.Biology DepartmentAdelphi UniversityGarden CityUSA

Personalised recommendations