Advertisement

Journal of Materials Science

, Volume 23, Issue 9, pp 3181–3186 | Cite as

Nitride formation by the carbothermal reduction of a zeolite-polyacrylonitrile inclusion compound

  • Yoshiyuki Sugahara
  • Hiromitsu Hiraiwa
  • Kazuyuki Kuroda
  • Chuzo Kato
Article

Abstract

An inclusion compound between zeolite and polyacrylonitrile has been applied as a precursor for the carbothermal reduction process. By heat treatment at 1400 to 1600° C in N2, β-sialon was mainly obtained. The X phase, α-Si3N4, the 15R-AlN phase, AIN, and mullite also formed under certain firing conditions. On the other hand, α-Si2N4 was detected as the principal crystalline phases as well as β-sialon in the products from zeolite-carbon mixtures. Hence, the use of the inclusion compound was advantageous for β-sialon production in the conversion of zeolite to nitrides.

Keywords

Polymer Heat Treatment Zeolite Nitride Crystalline Phasis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. H. Jack, J. Mater. Sci. 11 (1976) 1135.Google Scholar
  2. 2.
    R. J. Lumby, B. North and A. J. Taylor, NATO Adv. Study, Ser. E E23 (1977) 393.Google Scholar
  3. 3.
    J. G. Lee and I. B. Cutler, Amer. Ceram. Soc. Bull. 58 (9) (1979) 869.Google Scholar
  4. 4.
    H. Yoshimatu, M. Mitomo, H. Mihashi, S. Ohmori and T. Yabuki, Yogyo-Kyokai-Shi 91 (10) (1983) 442.Google Scholar
  5. 5.
    F. K. Van Dijen, R. Metselaar and C. A. M. Siskens, J. Amer. Ceram. Soc. 68 (1) (1985) 16.Google Scholar
  6. 6.
    J. B. Baldo, V. C. Pandolfelli and J. R. Casarini, in “Ceramic Powders”, edited by P. Vincenzini (Elsevier, Amsterdam, 1983) p. 437.Google Scholar
  7. 7.
    S. Okada and K. Kudo, Kanagawadaigaku Kougaku-Kenkyuujyo Shohou 6 (1983) 32; Chem. Abrstr. 100: 108091c.Google Scholar
  8. 8.
    H. Mostaghaci, Q. Fan, F. L. Riley, Y. Bigay and J. P. Torre, Rev. Int. Hautes Temp. Refract. Fr. 22 (3–4) (1985) 208.Google Scholar
  9. 9.
    I. Higgins and A. Hendry, Br. Ceram. Trans. J. 85 (5) (1986) 161.Google Scholar
  10. 10.
    K. Shimada, Y. Fukushige and Y. Hirata, Yogyo-Kyokai-Shi 86 (1) (1978) 5.Google Scholar
  11. 11.
    Y. Sugahara, K. Kuroda and C. Kato, J. Amer. Ceram. Soc. 67 (11) (1984) C-247.Google Scholar
  12. 12.
    Idem., J. Mater. Sci. in press.Google Scholar
  13. 13.
    D. W. Brick, “Zeolite Molecular Sieves”, (Wiley, New York, 1974) p. 29.Google Scholar
  14. 14.
    K. Nukada and K. Kobori, Kobunshi 23 (267) (1974) 445.Google Scholar
  15. 15.
    A. T. Petfield and R. P. Cooney, Aust. J. Chem. 33 (1980) 653.Google Scholar
  16. 16.
    J. Klinowski, J. M. Thomas, C. A. Fyfe and G. C. Gobbi, Nature 296 (1982) 533.Google Scholar
  17. 17.
    J. G. Thompson, Clays Clay Miner. 33(1985) 173.Google Scholar
  18. 18.
    J. E. Bailey and A. J. Clarke, Nature 234 (1971) 529.Google Scholar
  19. 19.
    S. Wild, H. Elliott and D. P. Thompson, J. Mater. Sci. 13 (1978) 1769.Google Scholar
  20. 20.
    A. Takase, S. Umebayashi and K. Kishi, Jpn J. Appl. Phys. 21 (10) (1982) 1447.Google Scholar
  21. 21.
    K. J. D. Mackenzie, J. Amer. Ceram. Soc. 55 (2) (1972) 68.Google Scholar
  22. 22.
    K. S. Mazdiyasni and C. M. Cooke, ibid. 56 (12) (1973) 628.Google Scholar

Copyright information

© Chapman and Hall Ltd 1988

Authors and Affiliations

  • Yoshiyuki Sugahara
    • 1
  • Hiromitsu Hiraiwa
    • 1
  • Kazuyuki Kuroda
    • 1
  • Chuzo Kato
    • 1
  1. 1.Department of Applied Chemistry, School of Science and EngineeringWaseda UniversityTokyoJapan

Personalised recommendations