Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Multi-configuration electron-hole potential method for excited states

Abstract

The recently proposed electron-hole potential (EHP) method for excited states is extended to the multi-configurational case. The variation equation is solved using the quadratic convergence method. The EHP methods are shown to be approximations to the complete singly excited configuration interaction (CSECI) in the variational sense. Extended Brillouin theorems are proved for the EHP methods. The excitation energies and wave functions obtained by one and two configurational EHP methods agree well with those of the CSECI method. The EHP methods have clear advantage in the computer time requirement over the CI method and are especially suited for a calculation of approximate excited states of large molecules. The EHP methods are applicable to excited states which belong to the same irreducible representation as the ground state.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Roothaan,C.C.J.: Rev. Mod. Phys. 23, 69 (1951)

  2. 2.

    For example: Lathan, W.A., Curtiss, L.A., Hehre, W.J., Lisle, J.B., Pople, J.A.: Prog. Phys. Org. Chem., to be published

  3. 3.

    Roothaan,C.C.J.: Rev. Mod. Phys. 32, 179 (1960).

  4. 3a.

    Huzinaga,S.: Phys. Rev. 120, 866 (1960); 122, 131 (1961)

  5. 4. a)

    Iwata,S., Morokuma,K.: Unpublished;

  6. 4. b)

    Davidson,E.R.: Chem. Phys. Letters 21, 565 (1973)

  7. 5.

    Schaefer,H.F.III.: The electronic structure of atoms and molecules (Addison Wesley, 1972)

  8. 6.

    Shibuya,T., Rose,J., McKoy,V.: J. Chem. Phys. 58, 500 (1973)

  9. 7.

    Morokuma,K., Iwata,S.: Chem. Phys. Letters 16, 192 (1972)

  10. 8.

    Löwdin,P.O.: Phys. Rev. 97, 1490 (1955); Huzinaga,S., McWilliams,D., Contu,A.A.: Adv. Quant. Chem. 7, 187 (1973), and references therein

  11. 9.

    Davidson,E.R.: J. Chem. Phys. 57, 1999 (1972)

  12. 10.

    Iwata,S., Morokuma,K.: Chem. Phys. Letters 19, 94 (1973)

  13. 11.

    Iwata,S., Morokuma,K.: J. Am. Chem. Soc. 95, 1563 (1973)

  14. 12.

    Iwata, S., Morokuma,K.: To be published

  15. 13.

    Lathan,W.A., Morokuma,K.: Presented at the Fifth Northeastern Regional Meeting, American Chemical Society at Rochester, N.Y., October 15–17, 1973

  16. 14.

    Bender,C.F., Dunning,T.H., Schaefer,H.F., Goddard,W.A., Hunt,W.J.: Chem. Phys. Letters 15, 171 (1972).

  17. 14a.

    Whitten,J.L.: J. Chem. Phys. 56, 5458 (1972).

  18. 14b.

    Morokuma,K, Konishi: J. Chem. Phys. 55, 402 (1971)

  19. 15. a)

    Roothaan,C.C.J., Bagus,P.S.: Methods in Comp. Phys. 2, 47 (1963).

  20. 15. b)

    Das,G., Wahl,A.C.: J. Chem. Phys. 56, 1769 (1972)

  21. 16.

    Hehre,W.J.,Lathan,W.A.,Ditchfield,R.,Newton,M.D., Pople,J.A.: Quantum chemistry program exchange, Indiana University

  22. 17.

    Morokuma,K., Iwata,S., Lathan,W.A.: Presented by K.M. at the First International Congress of Quantum Chemistry, Menton, France, July 1973, and to be published in a book covering the Symposia of the Congress

  23. 18.

    Some of the linear equations proposed to solve the multi-configuration SCF do not satisfy the Hermiticity of Lagrange multipliers. For example: Ref. 15b

  24. 19.

    Dahl,J.P., Johansen,H., Truax,T.R., Ziegler,T.: Chem. Phys. Letters 6, 64 (1970)

  25. 20.

    Herzberg,G.: Electronic spectra, polyatomic molecules. Princeton: Van Nostrand 1966

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Iwata, S., Morokuma, K. Multi-configuration electron-hole potential method for excited states. Theoret. Chim. Acta 33, 285–297 (1974). https://doi.org/10.1007/BF00551156

Download citation

Key words

  • Electron hole potential (EHP) method
  • Complete singly excited configuration interaction
  • Extended Brillouin theorems
  • Excited states