Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Spectral analysis of graphs by cyclic automorphism subgroups

  • 236 Accesses

  • 190 Citations

Abstract

The theory of spectral decomposition modulo subgroups of the graph automorphism group is extended to cyclic configurations of arbitrary rotational order. By regarding graphs with cyclic automorphisms as composite polymers of relatively simple monomeric structural units, it is shown that the spectrum of eigenvalues of many prominent molecular and nonmolecular families devolves to consideration of a single monomer-derived reduction network. As the only parameter associated with this network is the set of simple circuit eigenvalues, a direct connection is forged between the spectrum of a circuit and the spectrum of any cyclic array of the same periodicity.

In addition to simplifying determination of individual graph spectra, the role of the automorphism reduction network in organizing and uniting disparate aspects of spectral theory is stressed. Systems sharing a subspectrum of identical eigenvalues are readily recognized from the graphic nature of networks. As previously, symbolic and notational devices are devised for greatest economy in the spectral analysis.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Davidson, R. A.: Genesis and synthesis of cospectral and paracospectral graphs. To be published.

  2. 2.

    Davidson, R. A.: Symmetry, spectra, and bigraph division. To be published.

  3. 3.

    Davidson, R. A.: On the symmetry and spectra of molecular graphs. To be published.

  4. 4.

    Heilbronner, E.: Helv. Chim. Acta 37, 921 (1954).

  5. 5.

    Weimin, L.: Scientia Sinica 22, 539 (1979)

  6. 6.

    Au-chin, T., Yuan-sun, K.: Scientia Sinica 19, 207 (1976)

  7. 7.

    Au-chin, T., Yuan-sun, K.: Scientia Sinica 20, 595 (1977)

  8. 8.

    Ledermann, W.: Introduction to group characters. New York: Cambridge Univ. Press. 1977

  9. 9.

    Jansen, L., Boon, M.: Theory of finite groups. Amsterdam: North Holland 1967

  10. 10.

    Hamermesh, M.: Group theory. Reading, Mass.: Addison-Wesley 1962

  11. 11.

    Coleman, A. J. in: Adv. in quantum chem. 4, 83 (1968)

  12. 12.

    Serre, J., in: Molecular orbitals in chemistry, physics and biology, p. 133–149, Lowden, P., Pullman, B., Eds. New York; Academic Press 1964

  13. 13.

    Cotton, F. A.: Chemical applications of group theory. New York: Wiley Interscience 1963

  14. 14.

    Schwenk, A. J., in: Graphs and combinatorics p. 153–172, Bari, R., Harary, F., Eds. New York: Springer-Verlag 1974

  15. 15.

    Schwenk, A. J., Wilson, R. J., in: Selected topics in graph theory, p. 307–336 Beineke, L. W., Wilson, R. J., Eds. New York: Academic Press 1978

  16. 16.

    Streitwieser, Jr., A., Brauman, J. L.: Supplemental tables of molecular orbital calculations. New York: Pergamon Press 1965

  17. 17.

    Heilbronner, E., Straub, P. A.: Hückel molecular orbitals. New York: Springer-Verlag 1966

  18. 18.

    Bochvar, D. A., Stankevich, I. V.: J. Struct. Chem. 8, 841 (1967)

  19. 19.

    Diederich, F., Staab, H. A.: Ang. Chem., Int. Ed. Engl. 17, 372 (1978)

  20. 20.

    Streitwieser, Jr., A.: Molecular orbital theory for organic chemists New York: John Wiley 1961

  21. 21.

    Collatz, L., Sinogowitz, U.: Abh. Math. Sem. Univ. Hamburg 21, 63 (1957)

  22. 22.

    Mowshowitz, A.: J. Combinatorial Theory 12B, 177 (1972)

  23. 23.

    Elspas, B., Turner, J.: J. Combinatorial Theory 9, 297 (1970)

  24. 24.

    Rutherford, D. E.: Royal Soc. Edinburgh 63A, 232 (1950–51)

  25. 25.

    Polansky, O. E.: Monatsheft f. Chem. 91, 916 (1960), Appendix I

  26. 26.

    Schwenk, A. J., in: Theory and applications of graphs, p. 516–533 Alavi, Y., Lick, D. R., Eds. New York: Springer-Verlag 1978

  27. 27.

    Randić, M.: Intern. J. Quantum Chem. 15, 663 (1979)

  28. 28.

    Harary, F.: Graph Theory. Reading, Mass.: Addison-Wesley 1969

  29. 29.

    Tutte, W. T.: Connectivity in graphs. Toronto: Univ. of Toronto Press 1966

  30. 30.

    Godsil, C., Holton, D. A., McKay, B., in: Combinatorial mathematics V, p. 111 Little, C. H. C., Ed. New York: Springer-Verlag 1977

  31. 31.

    Rutherford, D. E.: Royal Soc. Edinburgh A62, 229 (1947)

Download references

Author information

Additional information

Part 4 of the series “Unified Theory of Graph Spectral Reduction Networks”

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Davidson, R.A. Spectral analysis of graphs by cyclic automorphism subgroups. Theoret. Chim. Acta 58, 193–231 (1981). https://doi.org/10.1007/BF00551119

Download citation

Keywords

  • Automorphism Group
  • Composite Polymer
  • Spectral Decomposition
  • Great Economy
  • Simple Circuit