Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Microhardness anisotropy in cubic and hexagonal ZnS single crystals

  • 60 Accesses

  • 9 Citations


Microhardness anisotropy of hexagonal and cubic ZnS crystals grown from the vapour-phase has been investigated.

Experimental data have been analysed by statistical methods and it has been established that ZnS shows remarkable work-hardening.

Whatever the crystal structure, on close-packed planes, it was not possible to observe microhardness anisotropy in different crystallographic directions (type A anisotropy). However, in both cubic and hexagonal crystals, on prism planes, type A anisotropy could often be seen. In both types of crystal, between the close packed and prism planes, a remarkable microhardness anisotropy could be measured on different planes (type B anisotropy). The value of this type B microhardness anisotropy was dependent on the degree of contamination of the crystal.

On the basis of the measurements made it was established that the microhardness of ZnS follows the Meyer law.

This is a preview of subscription content, log in to check access.


  1. 1.

    J. Siebel, Metall, und Erz 40 (1943) 169.

  2. 2.

    F. Robertson and W. J. Van Meter, Econ. Geol. 46 (1951) 541.

  3. 3.

    G. A. Wolf, R. A. Hebert, and J. D. Broder, “Semiconductors and Phosphors” (J. Wiley, Interscience, New York, 1958).

  4. 4.

    G. Bontiglioli and A. Suardo, Technical note, Grant No. AFEDAR 63–87 (1965).

  5. 5.

    V. E. Oranovskij, E. I. Panasiuk, and B. T. Fedoshin, Inzh. Physich. Zh. (Soviet) 2 (1949) 40.

  6. 6.

    P. Kovács and J. Szabó, Acta Phys. Hangar. 14 (1962) 131.

  7. 7.

    E. Lendvay and P. Kovács, Proc. Int. Conf, on Luminescence, Budapest (Publishing House of Hung. Acad. Sci, Budapest, 1966) P. 1098.

  8. 8.

    J. Woods, Brit. J. Appl. Phys. 1 (1960) 296.

  9. 9.

    F. B. Bakradze and A. Rom-Kritshevskaya, Cryst. (Soviet) 8 (1963) 238.

  10. 10.

    I. Vincze, “Statisztikai Minőségellenőrzés” (Közgazd, lés Jogi Könyvkiadó, Budapest, 1958).

  11. 11.

    A. Hald, “Statistical Theory with Engineering Applications” (John Wiley and Sons Inc, London, 1960).

  12. 12.

    H. Bückle, Metall Rev. 4 (1959) 49.

  13. 13.

    Yu. S. Boyarskaya and M. I. Pavlovskaya, Zav. Lab. (Soviet) 3 (1967) 355.

  14. 14.

    V. M. Glazov and V. N. Victorovich, “Mikrotverdnost Metallov” (Metallurgizdat, Moskva, 1962).

  15. 15.

    P. G. Patridge and E. Roberts, J. Inst. Metal. 92 (1963) 50.

  16. 16.

    J. J. Gilman and W. G. Johnson, “Dislocations and Mechanical Properties of Crystals” (Chapman and Hall, London, 1957).

  17. 17.

    F. W. Vahldick et al, Trans. Met. Soc. AIME 236 (1966) 1490.

  18. 18.

    A. A. Shpunt and O. A. Nabutovskaya, F. P. (Soviet) 9 (1966) 149.

  19. 19.

    A. A. Giardini, Amer. Min. 43 (1958) 957.

  20. 20.

    R. M. Denning, Amer. Min. 42 (1957) 362.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lendvay, E., Fock, M.V. Microhardness anisotropy in cubic and hexagonal ZnS single crystals. J Mater Sci 4, 747–752 (1969). https://doi.org/10.1007/BF00551067

Download citation


  • Polymer
  • Experimental Data
  • Anisotropy
  • Crystal Structure
  • Hexagonal