Journal of Materials Science

, Volume 15, Issue 10, pp 2478–2482 | Cite as

The contribution of structural disorder to diffuse phase transitions in ferroelectrics

  • N. Setter
  • L. E. Cross
Papers

Abstract

Simple crystal-chemical arguments were used to suggest that in the ferroelectric perovskite lead-scanium-tantalate (PbSc0.5Ta0.5O3) the B-site cations in this simple ABO3 structure should be close to the boundary between order and disorder. Both polycrystal ceramic and single crystal materials of this composition have been grown. In this study X-ray powder diffraction is used to identify the strong superlattice reflections associated with the ordering of scandium and tantalum ions in the B-site, and to demonstrate quantitatively how the degree of ordering can be modified by suitable thermal treatment. Thermal changes associated with the ferroelectric Curie temperature have been measured by differential scanning calorimetry and show very clearly the manner in which the diffuse (broadened) transition in this crystal is sharpened by increase in the B-cation ordering.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. A. Bokov and I. E. Mylnikova, Fiz. Tverd. Tela. 3 (1961) 871, in Russian. For translation see Soviet Physics Solid State 3 (1961) 613.Google Scholar
  2. 2.
    Jum Kuwata, K. Uchino and S. Nomura, Ferroelectrics 22 (1979) 863.Google Scholar
  3. 3.
    A. M. Glass, J. Appl. Phys. 40 (1969) 4699.Google Scholar
  4. 4.
    G. A. Smolenski, Proceedings of the 2nd International Meeting on Ferroelectricity, Kyoto (1969) (Phys. Soc. Japan, Tokyo, 1970) p. 26.Google Scholar
  5. 5.
    B. N. Rolov, Fizika Tverd. Tela 6 (1964) 2128, in Russian. For translation see Sovient Physics Solid State 6 (1976) 1676.Google Scholar
  6. 6.
    G. Burns and D. F. O'Kane, Phys. Lett. 28A (1969) 776.Google Scholar
  7. 7.
    V. Va. Frizberg and B. A. Rolov, An. SSSR, Serv, Giz. 28 (1964) 649, in Russian. For translation see 28 (1964) 556.Google Scholar
  8. 8.
    F. Galasso and W. Darby, S. Phys. Chem. 66 (1962) 131.Google Scholar
  9. 9.
    V. S. Filipev and E. G. Fresenko, Kristallografiya 10 (1965) 798, in Russian. For translation see Kristallografiya 10 (1965) 243.Google Scholar
  10. 10.
    E. G. Fresenko et al., Isv. An. SSSR, Ser. Fiz. 28 (1964) 669, in Russian. For translation see Isv. An. SSSR, Ser. Fiz. 28 (1964) 576.Google Scholar
  11. 11.
    L. I. Shuovneva and Yu. N. Venevstev, JETP 49 (1965) 1038, in Russian. For translation see 22 (1966) 722.Google Scholar
  12. 12.
    G. B. Blasse, Inorg. Nucl. Chem. 27 (1965) 993.Google Scholar
  13. 13.
    F. S. Galasso et al., J. Amer. Chem. Soc. 81 (1959) 820.Google Scholar
  14. 14.
    A. I. Agranovskaya, Bull. Acad. Sci. USSR 24 (1960) 1271.Google Scholar
  15. 15.
    M. F. Kupriyanov and E. G. Fesenko, ibid. 29 (1965) 930.Google Scholar
  16. 16.
    V. S. Filipev et al., Kristallografiya 6 (1962) 770, in Russian. For translation see Kristallografiya 6 (1962) 616.Google Scholar
  17. 17.
    I. G. Ismailzade, ibid. 4 (1959) 417, in Russian. For translation see Kristallografiya 4 (1959) 389.Google Scholar
  18. 18.
    F. C. Galasso, “Structure, Properties and Preparation of Perovskite Type Componds” (Pergamon Press, Oxford, 1969).Google Scholar
  19. 19.
    R. D. Shannon and C. T. Prewitt, Acta Cryst. B25 (1969) 925.Google Scholar
  20. 20.
    A. J. Burggraaf and C. Stenger, Ferroelectrics 20 (1978) 185.Google Scholar
  21. 21.
    J. C. Burfoot, “Ferroelectrics” (Van Nostrand, London, 1967) p. 224.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1980

Authors and Affiliations

  • N. Setter
    • 1
  • L. E. Cross
    • 1
  1. 1.Materials Research LaboratoryThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations