Journal of Materials Science

, Volume 15, Issue 7, pp 1648–1662

Raman spectroscopic investigation of the structure and crystallization of binary alkali germanate glasses

  • T. Furukawa
  • William B. White
Papers

Abstract

Raman spectra have been measured on bulk GeO2 glass and the alkali germanate glasses of composition M2OxGeO2 where M=K, Na, Li, and x varies from 19 to 1, as well as on crystallized glasses. The low alkali content glasses (x≥3) retain a completely polymerized structure of germania polyhedra. Addition of small amounts of alkali oxide to GeO2 glass does not break the Ge-O-Ge bridging bonds and creates higher co-ordination of germanium atoms. Further addition of alkali oxide eventually breaks up some of the Ge-O-Ge bonds to create Ge-O non-bridging oxygens. In the K- and Na-glasses a small number of non-bridging oxygens already exist at x=4.5, while in the Li-glasses they do not exist even at x=4. The structures of the low alkali content glasses start to disappear at x between 4 and 3 and they disappear almost completely at x=2. At x between 2 and 1, glass structures become analogous to the silicate glass structures. At x=2, the glass consists of disordered (Ge2O5)n sheet-like structures and at x=1 disordered (GeO3)n chain structures.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. A. Brawer and W. B. White, J. Chem. Phys. 63 (1975) 2421.Google Scholar
  2. 2.
    S. A. Brawer, Phys. Rev. B11 (1975) 3173.Google Scholar
  3. 3.
    S. A. Brawer and W. B. White, J. Non-Cryst. Solids 23 (1977) 261.Google Scholar
  4. 4.
    A. O. Ivanov and K. S. Yestropovb, Dokl. Akad. Nauk SSSR 145 (1962) 797.Google Scholar
  5. 5.
    M. K. Murthy and J. Ip, Nature, London 201 (1964) 285.Google Scholar
  6. 6.
    J. E. Shelby, J. Amer. Ceram. Soc. 57 (1974) 436.Google Scholar
  7. 7.
    C. R. Kurkjian and J. T. Krause, ibid 49 (1966) 134.Google Scholar
  8. 8.
    M. K. Murthy and J. Ip, ibid 47 (1964) 328.Google Scholar
  9. 9.
    M. K. Murthy and J. Aguayo, ibid 47 (1964) 444.Google Scholar
  10. 10.
    M. K. Murthy, L. Long, and J. Ip, ibid 51 (1968) 661.Google Scholar
  11. 11.
    R. Schwarz and F. Heinrich, Z. Anorg. Chem. 205 (1932) 43.Google Scholar
  12. 12.
    J. F. White, E. R. Shaw, J. F. Corwin and A. Pabst, Anal. Chem. 31 (1959) 315.Google Scholar
  13. 13.
    N. Ingri and G. Lundgrer, Acta Chem. Scand. 17 (1963) 617.Google Scholar
  14. 14.
    J. H. Jolly and R. L. Myklebust, Acta Cryst. B24 (1968) 460.Google Scholar
  15. 15.
    E. A. Weaver and C. T. Li, J. Amer. Ceram. Soc. 52 (1969) 335.Google Scholar
  16. 16.
    A. Wittmann and P. Papamantellos, Mh. Chem. 91 (1960) 855.Google Scholar
  17. 17.
    A. Wittmann and E. Modern, ibid 96 (1965) 581.Google Scholar
  18. 18.
    E. Modern and A. Wittmann, ibid 97 (1966) 1242.Google Scholar
  19. 19.
    H. Völlenkle, A. Wittmann and H. Nowotny, ibid 100 (1969) 79.Google Scholar
  20. 20.
    Idem, ibid 101 (1970) 46.Google Scholar
  21. 21.
    Idem, ibid 102 (1971) 361.Google Scholar
  22. 22.
    Idem, ibid 102 (1971) 964.Google Scholar
  23. 23.
    H. Völlenkle and A. Wittmann, ibid 102 (1971) 1245.Google Scholar
  24. 24.
    E. Fay, H. Völlenkle and A. Wittmann, Natunwiss. 58 (1971) 455.Google Scholar
  25. 25.
    E. Fay and A. Wittmann, Z. Kristall. 138 (1973) 439.Google Scholar
  26. 26.
    T. Furukawa, S. A. Brawer and W. B. White, J. Mater. Sci. 13 (1978) 268.Google Scholar
  27. 27.
    T. Furukawa and W. B. White, Phys. Chem. Glasses 20 (1979) 69.Google Scholar
  28. 28.
    M. K. Murthy and E. M. Kirby, ibid 5 (1964) 144.Google Scholar
  29. 29.
    Y. S. Bobovich and T. P. Tolub, Opt. Spect. (English transl.) 12 (1962) 269.Google Scholar
  30. 30.
    R. H. Stolen, Phys. Chem. Glasses 11 (1970) 83.Google Scholar
  31. 31.
    M. Hass, Solid State Commun. 7 (1969) 1069.Google Scholar
  32. 32.
    Idem, J. Phys. Chem. Solids 31 (1970) 415.Google Scholar
  33. 33.
    Laubengayer and Morton, J. Amer. Chem. Soc. 54 (1932) 2303.Google Scholar
  34. 34.
    G. S. Smith and P. B. Isaacs, Acta Cryst. 17 (1964) 842.Google Scholar
  35. 35.
    W. H. Baur, ibid 9 (1956) 515.Google Scholar
  36. 36.
    H. Böhm, Naturwiss. 12 (1968) 684.Google Scholar
  37. 37.
    J. F. Scott, Phys. Rev. B1 (1970) 3488.Google Scholar
  38. 38.
    F. L. Galeener and G. Lucovsky, Phys. Rev. Letters 37 (1976) 1474.Google Scholar
  39. 39.
    J. F. Scott and S. P. S. Porto, Phys. Rev. 161 (1967) 903.Google Scholar
  40. 40.
    W. B. White and R. Disalvo, unpublished Raman spectra of alpha-quartz, low tridymite, alpha-Cristobalite, and coesite.Google Scholar
  41. 41.
    J. B. Bates and A. S. Quist, J. Chem. Phys. 56 (1972) 1528.Google Scholar
  42. 42.
    J. B. Bates, ibid 57 (1972) 4042.Google Scholar
  43. 43.
    I. Simon and H. O. Mcmahon, ibid 21 (1953) 23.Google Scholar
  44. 44.
    J. Wong and C. A. Angell, “Glass, Structure by Spectroscopy” (Marcel Decker, New York, 1976) Ch. 7 and 8.Google Scholar
  45. 45.
    W. L. Konijnendijk and J. M. Stevels, J. Non-Cryst. Solids 18 (1965) 307.Google Scholar
  46. 46.
    W. B. White, S. A. Brawer, T. Furukawa and G. J. Mccarthy, “Borate Glasses: Structure, Properties, Applications” edited by L. D. Pye, V. D. Frechette and N. J. Kreidl, “Material Science Research”, Vol. 12 (Plenum Press, New York, 1978) p. 281.Google Scholar
  47. 47.
    A. S. Fenney and J. Wong, J. Chem. Phys. 56 (1972) 5516.Google Scholar
  48. 48.
    E. Modern and A. Wittmann, Mh. Chem. 96 (1965) 1983.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1980

Authors and Affiliations

  • T. Furukawa
    • 1
  • William B. White
    • 1
    • 2
  1. 1.Materials Research LaboratoryThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of GeosciencesUSA

Personalised recommendations