Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Deformation of polyoxymethylene by rolling

Abstract

The deformation due to rolling of polyoxymethylene (POM) was investigated by using wide and small angle X-ray techniques and electron microscopy. Tensile tests of rolled POM indicate that the yield stress increases along the roll direction. This is accompanied by a decrease in the yield stress perpendicular to the roll direction. Wide angle X-ray data from uniaxially rolled POM, obtained by means of pole figures, indicate that molecular chains tilt preferentially at approximately 30° to the roll direction at low rolling deformation, and align in the roll direction when the sample is rolled to its fullest extent. A lamellar tilt of of about 30° is also observed. Thus, the chains must tilt within the lamellae. When samples are fully rolled, small angle patterns indicate at least partial breakup of lamellae. Biaxial rolling produces no such breakup, but a uniform tilting of lamellae through the entire range of deformation.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    I. L. Hay and A. Keller, J. Mater. Sci. 1 (1966) 41.

  2. 2.

    Idem, ibid 2 (1967) 538.

  3. 3.

    F. C. Frank, A. Keller, and A. O'Connor, Phil. Mag. 3 (1958) 64.

  4. 4.

    J. J. Point, D. M. Gezovich, A. Keller, and G. A. Homes, J. Mater. Sci., in print.

  5. 5.

    W. Wilchinsky, J. Appl. Polymer. Sci. 7 (1963) 923.

  6. 6.

    Idem, J. Appl. Phys. 31 (1960) 1969.

  7. 7.

    K. O'Leary and P. H. Geil, J. Macromol. Sci. (Phys.) B2(2) (1968) 261.

  8. 8.

    G. S. Y. Yeh and P. H. Geil, ibid B1(2) (1967) 251.

  9. 9.

    W. O. Statton and G. M. Godard, J. Appl. Phys. 28 (1957) 1111.

  10. 10.

    E. W. Fischer, H. Goddar, and G. F. Schmidt, Kolloid Z. u. Z. Polymere 226 (1968) 30.

  11. 11.

    W. O. Statton, J. Polymer Sci. 41 (1959) 143.

  12. 12.

    K. Hess and H. Kiessig, Z. Physik. Chem. 193 (1944) 196.

  13. 13.

    L. B. Morgan, J. Appl. Chem. 4 (1954) 160.

  14. 14.

    R. Bonart and R. Hosemann, Inter. Union Pure Appl. Chem. Symposium on Micromolecular Chemistry, preprints paper IB9 (1959).

  15. 15.

    T. Seto, and T. Hara, Reports on Progress in Polymer Physics IX (Japan 1966).

  16. 16.

    T. Seto and Y. Tajima, J. Appl. Phys. Japan 5 (1967) 534.

  17. 17.

    R. Bonart, Kolloid Z. u. Z, Polymere 199 (1964) 136.

  18. 18.

    W. Wilchinsky, Soc. Plastics Engin. Jour. 22 (1966) 46.

  19. 19.

    I. Swerlich and F. P. Gay, U.S. Patent No. 2,952,878, Sept. 20, 1960.

  20. 20.

    J. G. Williams and H. Ford, J. Mech. Eng. Sci. 9 (1967) 362.

  21. 21.

    G. Gruenwald, Modern Plastics 38 (1960) 137.

  22. 22.

    A. Keller and J. G. Rider, J. Mater. Sci. 1 (1966) 389.

  23. 23.

    B. Maxwell and P. H. Rotschild, J. Appl. Polymer. Sci. 5 (1961) S11.

  24. 24.

    A. Peterlin and J. Elwell, J. Mater. Sci. 2 (1967) 1.

  25. 25.

    L. J. Broutman and S. Kalpakjian, SPE 27th Annual Technical Conference, Chicago, Ill., May 1969.

  26. 26.

    B. D. Cullity, “Elements of X-ray Diffraction,” Addison-Wesley Pub. Co., Reading, Mass. (1959) 285.

  27. 27.

    D. M. Gezovich, Ph.D. Thesis, Case Western Reserve Univ. (1969).

  28. 28.

    E. S. Clark, Soc. Plastics Engin. Jour. 23 (1967) 46.

  29. 29.

    P. H. Geil, J. Polymer Sci. Part C 13 (1966) 149.

  30. 30.

    D. A. Zaukelies, J. Appl. Phys. 33 (1962) 2797.

  31. 31.

    A. Siegmann and P. H. Geil, J. Macromol. Sci. (Phys.) in print.

  32. 32.

    A. Peterlin, J. Polymer Sci., Part C, 15 (1966) 427.

  33. 33.

    R. Corneliussen and A. Peterlin, Makromol. Chem. 105 (1967) 193.

  34. 34.

    A. Peterlin, and R. Corneliussen, J. Polymer Sci. A-2, 6 (1968) 1273.

  35. 35.

    D. Hansen and J. A. Rusnock, J. Appl. Phys. 36 (1965) 332.

  36. 36.

    I. Hay and A. Keller, Kolloid Z. 204 (1965) 43.

  37. 37.

    V. F. Holland and P. H. Lindenmeyer, J. Appl. Phys. 36 (1965) 3049.

  38. 38.

    R. Bonart, Kolloid Z. 199 (1964) 136.

  39. 39.

    T. Oda, S. Nomura, and H. Kawai, J. Polymer Sci. A3 (1965) 1943.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gezovich, D.M., Geil, P.H. Deformation of polyoxymethylene by rolling. J Mater Sci 6, 509–530 (1971). https://doi.org/10.1007/BF00550306

Download citation

Keywords

  • Tensile Test
  • Entire Range
  • Roll Direction
  • Small Angle
  • Pole Figure