Journal of Materials Science

, Volume 7, Issue 10, pp 1119–1124

The crystal growth and thermoelectric properties of chromium disilicide

  • I. Nishida


Single crystals of chromium disilicide about 8 mm in diameter and 35 mm long were grown using the floating zone technique. Measurements of electrical resistivity ρ, Hall coefficient R and thermoelectric power α were carried out in the temperature range from 85 to 1100 K. The values of ρ and α showed the anisotropy over the temperature range studied. The ratios parallel and perpendicular to the c-axis were ρ/ρ=1.9 and α/α⊥=1.7 respectively, at room temperature. It was found to be a degenerate semiconductor having the hole concentration of 6.3×1020 cm−3 below 600 K. The effective masses of holes parallel and perpendicular to the c-axis determined from the thermoelectric power and the hole concentration near room temperature were estimated to be five and three times as large as a free electron mass, respectively. The calculation on the values of α and α was made using those effective masses. These values showed good agreement with the observed values in the temperature range from 150 to 1100 K.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. N. Guseva and B. N. Ovechkin, Doklady Akad. Nauk SSSR 112 (1957) 681.Google Scholar
  2. 2.
    E. N. Nikitin, Zhur. Tekh. Fiz. 28 (1958) 26.Google Scholar
  3. 3.
    Y. Sasaki, S. Asanabe, and D. Shinoda, Phys. Soc. Japan Meeting, April (1959) 68.Google Scholar
  4. 4.
    E. N. Nikitin, Soviet Physics-Solid State 1 (1959) 304.Google Scholar
  5. 5.
    T. Sakata and T. Tokushima, Trans. Nat. Res. Inst. Metals (Japan) 5 (1963) 34.Google Scholar
  6. 6.
    V. A. Korshunov and P. V. Gel'd, Fiz. Metal. i Metalloved. 11 (1960) 945.Google Scholar
  7. 7.
    L. D. Ivanova, N. Kh. Abrikosov, E. I. Elagina, and V. D. Khbostikva, Neorg. Material 5 (1969) 1933.Google Scholar
  8. 8.
    W. B. Bienert and E. A. Skrabek, Proc. IEEE/ AIAA Thermoelectric Specialists Conf. 10 (1966) 1.Google Scholar
  9. 9.
    R. M. Ware and D. J. Mchiell, Proc. IEE, 111 (1964) 178.Google Scholar
  10. 10.
    U. Birkholz and J. Schelm, Phys. Stat. Sol. 27 (1968) 413.Google Scholar
  11. 11.
    J. Hesse, Z. Metalk. 60 (1969) 653.Google Scholar
  12. 12.
    U. Birkholz and A. Fruhaue, Phys. Stat. Sol. 34 (1969) K177.Google Scholar
  13. 13.
    R. Kieffer, F. Benesovsky, and C. Konpicky, Ber. deutsche keram. Ges. 31 (1954) 223.Google Scholar
  14. 14.
    T. Tokushima, I. Nishida, K. Sakata, and T. Sakata, J. Mater. Sci. 4 (1969) 978.Google Scholar
  15. 15.
    B. Boren, Arkiv. Kem. Mineral Geol. 11A (1933) no. 10, 1.Google Scholar
  16. 16.
    D. Shinoda, S. Asanabe, and Y. Sasaki, J. Phys. Soc. Japan 19 (1964) 269.Google Scholar
  17. 17.
    B. K. Voronov, L. D. Dudkin, and N. N. Trusova Kristallografiya 12 (1967) 519.Google Scholar
  18. 18.
    L. P. Zelenin, I. Z. Radovskii, F. A. Sidorenko, P. V. Gel'd, and B. S. Rabinovich, Poriskobaya Met. 2 (1966) 67.Google Scholar
  19. 19.
    E. H. Putley, “The Hall Effect and Related Phenomena” (Butterworth Co. London, 1960) p. 61.Google Scholar
  20. 20.
    A. F. Ioffe, “Physics of Semiconductors” (Inforsearch Ltd, London, 1960) p. 305.Google Scholar
  21. 21.
    G. L. Pearson and F. Bardeen, Phys. Rev. 75 (1949) 865.Google Scholar

Copyright information

© Chapman and Hall Ltd 1972

Authors and Affiliations

  • I. Nishida
    • 1
  1. 1.National Research Institute for MetalsTokyoJapan

Personalised recommendations