Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Thin alloy zone crystallisation

  • 61 Accesses

  • 30 Citations

Abstract

The basic principles of a family of crystal-growing techniques in which crystallisation of a substance is achieved via diffusion through a thin alloy zone (TAZ) from a third phase (solid, liquid, or vapour) are described. Crystallisation is achieved by the application of a gradient of a thermodynamic potential across the zone and various methods of establishing such a gradient are considered.

A theory predicting the velocity of a TAZ along a solid charge, published previously (D. T. J. Hurle, J. B. Mullin, and E. R. Pike, Phil. Mag. 9 (1964) 423), is extended to include the case where one of the solid phases is metastable. Expressions for the gradient of constitutional supercooling in the zone are derived for conventional and thin alloy zone crystallisation (TAZC) processes. It is shown that the important advantage in the use of a TAZ is the dramatic reduction in the supercooling at a given velocity compared to conventional processes.

A rationalisation of various published techniques of crystal growth within the concepts of TAZC is presented and some existing and potential applications of TAZC processes are reviewed.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    D. T. J. Hurle, J. B. Mullin, and E. R. Pike, Phil. Mag. 9 (1964) 423.

  2. 2.

    Idem, Solid State Comm. 2 (1964) 197 and 201.

  3. 3.

    R. A. Laudise, “The Art and Science of Growing Crystals” (John Wiley, New York, 1963), p. 252.

  4. 4.

    F. A. Trumbore, E. M. Porbansky, and A. A. Tartaglia, J. Phys. Chem. Solids 11 (1959) 239.

  5. 5.

    R. A. Laudise, reference 3“, p. 261.

  6. 6.

    J. W. Nielsen, R. C. Linares, and S. E. Koonce, J. Amer. Ceram. Soc. 45 (1962) 12.

  7. 7.

    D. T. J. Hurle, Solid State Electron. 3 (1961) 37.

  8. 8.

    W. Bardsley, J. S. Boulton, and D. T. J. Hurle, ibid 5 (1962) 395.

  9. 9.

    W. G. Pfann, Trans. AIME 203 (1955) 961.

  10. 10.

    Idem, US Patent No. 2,813,048, Nov. 12th (1957).

  11. 11.

    Idem, “Zone Melting” (John Wiley, New York, 1958).

  12. 12.

    R. T. Delves, Brit. J. Appl. Phys. 16 (1965) 343.

  13. 13.

    F. H. Nicoll, J. Electrochem. Soc. 110 (1963) 1165.

  14. 14.

    B. S. Kurbatov, E. V. Rakova, and G. A. Kurov, Kristallografiya 10 (1965) 756.

  15. 15.

    G. Ziegler, Solid State Electron. 6 (1963) 680.

  16. 16.

    W. G. Pfann, K. E. Benson, and J. H. Wernick, J. Electron. Control. 2 (1957) 597.

  17. 17.

    P. H. Van Lent, Acta. Met. 9 (1961) 125.

  18. 18.

    R. S. Wagner and W. C. Ellis, Appl. Phys. Letters 4 (1964) 89.

  19. 19.

    D. T. J. Hurle, J. B. Mullin, and E. R. Pike, J. Chem. Phys. 42 (1965) 1651; 43 (1965) 3420.

  20. 20.

    J. Angus, D. V. Ragone, and E. E. Hucke, Met. Soc. Conferences 8 (1961) 833.

  21. 21.

    W. G. Pfann and R. S. Wagner, Trans. AIME 224 (1962) 1139.

  22. 22.

    W. A. Tiller, J. Appl. Phys. 34 (1963) 2763.

  23. 23.

    A. I. Mlavsky and M. Weinstein, ibid, 2885.

  24. 24.

    L. B. Griffiths and A. I. Mlavsky, J. Electrochem. Soc. 111 (1964) 805.

  25. 25.

    J. H. Wernick, Trans. AIME 221 (1957) 1169.

  26. 26.

    P. H. Van Lent, Acta Met. 10 (1962) 1089.

  27. 27.

    W. Bardsley, J. M. Callan, H. A. Chedzey, and D. T. J. Hurle, Solid State Electron. 3 (1961) 142.

  28. 28.

    W. W. Mullins and R. F. Sekerka, J. Appl. Phys. 35 (1964) 444.

  29. 29.

    J. A. Burton, R. C. Prim, and W. P. Slichter, J. Chem. Phys. 31 (1953) 15.

  30. 30.

    D. S. Robertson and B. Cockayne, J. Appl. Phys. 37 (1966) 927.

  31. 31.

    M. A. Wright, J. Electrochem. Soc. 112 (1965) 1114.

  32. 32.

    M. Weinstein, R. O. Bell, and A. A. Menna, ibid 111 (1964) 674.

  33. 33.

    R. S. Wagner, W. C. Ellis, K. A. Jackson, and S. M. Arnold, J. Appl. Phys. 35 (1964) 2993.

  34. 34.

    N. Holonyak (Jr), C. M. Wolfe, and J. S. Moore, Appl. Phys. Letters 6 (1965) 64.

  35. 35.

    R. L. Barns and W. C. Ellis, J. Appl. Phys. 36 (1965) 2296.

  36. 36.

    J. D. Filby and S. Nielsen, Brit. J. Appl. Phys. 17 (1966) 81.

  37. 37.

    D. W. F. James and C. Lewis, ibid 16 (1965) 1089.

  38. 38.

    J. D. Filby and S. Nielsen, Microelectronics and Reliability 5 (1966) 11.

  39. 39.

    Idem, J. Electrochem. Soc. 112 (1965) 534.

  40. 40.

    Idem, ibid, 957.

  41. 41.

    H. P. Bokenkirk, F. P. Bundy, H. T. Hall, H. M. Strong, and R. H. Wentorf, Nature 184 (1959) 1094.

  42. 42.

    A. A. Giardini and J. E. Tydings, Amer. Mineralogist 47 (1962) 1393.

  43. 43.

    J. M. Gilles and J. Van Cakenberghe, Nature 182 (1963) 862.

  44. 44.

    Idem, Solid State Phys. Electron., Telecommons. Internat. Conf. Brussels, 2 (2) (1958) 900.

  45. 45.

    W. G. Burgers, reference 3“, p. 416.

  46. 46.

    T. B. Reed and W. J. Lafleur, Appl. Phys. Letters 5 (1964) 191.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hurle, D.T.J., Mullin, J.B. & Pike, E.R. Thin alloy zone crystallisation. J Mater Sci 2, 46–62 (1967). https://doi.org/10.1007/BF00550052

Download citation

Keywords

  • Polymer
  • Potential Application
  • Crystal Growth
  • Basic Principle
  • Dramatic Reduction