Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Small-angle neutron scattering study of creep cavity nucleation and growth in sintered alumina

Abstract

The early stages of creep cavitation in sintered alumina are characterized using small-angle neutron scattering (SANS). It is found that the initial cavity density is of the order of 1011 cm−3, and that the average initial pore is approximately 60 nm in radius. The incubation time for nucleating additional pores during subsequent creep is extremely short, in agreement with the theory based on the “precipitation” of grain-boundary diffusing vacancies. Pore density at constant stress and temperature is a linearly increasing function of time, as predicted by classical nucleation theory. However, a local stress of 10−2 E is required to achieve the measured nucleation rate. Cavities are observed to lie primarily on two-grain junctions in linear arrays, with an average cavity radius of approximately 60 nm. It is hypothesized that the cavities nucleate at grain boundary ledges which provide the necessary local stress concentrations. Calculation of the individual cavity growth rate yields a zero or near zero value. This suggests a rapid transient growth period following nucleation which quickly decreases to a negligible growth rate.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    A. G. Evans and A. Rana, Acta Metall. 28 (1980) 129.

  2. 2.

    A. S. Argon, I. W. Chen and C. W. Lau, “Creep-Fatigue-Environmental Interactions”, edited by R. M. Pelloux and N. S. Stoloff (The Metallurgical Society of AIME, Warrendale, PA, 1980) p. 46.

  3. 3.

    R. Raj, Acta Metall. 26 (1978) 995.

  4. 4.

    L.-E. Svensson and G. L. Dunlop, Can. Met. Q. 18 (1979) 39.

  5. 5.

    A. G. Evans, J. R. Rice and J. P. Hirth, J. Amer. Ceram. Soc. 63 (1980) 368.

  6. 6.

    R. Raj and M. F. Ashby, Acta Metall. 23 (1975) 653.

  7. 7.

    R. Becker and W. During, Amer. Phys. 24 (1935) 719.

  8. 8.

    W. C. Koehler and R. W. Hendricks, J. Appl. Phys. 50 (1979) 1951.

  9. 9.

    R. Page, J. R. Weertman and M. Roth, Acta Metall. 30 (1982) 1357.

  10. 10.

    R. W. Hendricks, J. Schelten and W. Schmatz, Phil. Mag. 30 (1974) 819.

  11. 11.

    M. H. Yoo, J. C. Ogle, B. S. Borie, E. H. Lee and R. W. Hendricks, Acta Metall. 30 (1982) 1733.

  12. 12.

    T. Saegusa, J. R. Weertman, J. B. Cohen and M. Roth, J. Appl. Cryst. 11 (1978) 602.

  13. 13.

    H. L. Marcus and M. E. Fine, J. Amer. Ceram. Soc. 55 (1972) 568.

  14. 14.

    D. R. Clarke, ibid 63 (1980) 339.

  15. 15.

    W. C. Johnson and D. F. Stein, ibid. 58 (1975) 487.

  16. 16.

    W. C. Johnson, Met. Trans. 8A (1977) 1413.

  17. 17.

    R. I. Taylor, J. P. Coad and R. J. Brook, J. Amer. Ceram. Soc. 57 (1974) 539.

  18. 18.

    R. I. Taylor, J. P. Coad and A. E. Hughes, ibid. 59 (1976) 374.

  19. 19.

    W. C. Johnson, ibid. 61 (1978) 234.

  20. 20.

    P. E. C. Franken and A. P. Gehring, J. Mater. Sci. 16 (1981) 384.

  21. 21.

    A. H. Heuer, N. J. Tighe and R. M. Cannon, J. Amer. Ceram. Soc. 63 (1980) 53.

  22. 22.

    D. R. Clarke, private communication (1982).

  23. 23.

    R. Page and J. Lankford, unpublished research.

  24. 24.

    M. Roth, J. Appl. Cryst. 10 (1977) 122.

  25. 25.

    A. Guinier Ann. Phys, Paris 12 (1939) 161.

  26. 26.

    Idem, “X-Ray Diffraction” (Freeman, San Francisco, 1963).

  27. 27.

    G. Porod, Kolloid Z 125 (1952) 51.

  28. 28.

    R. A. Page and J. Lankford, J. Amer. Ceram. Soc. 66 (1983) C-146.

  29. 29.

    I. S. Fedorova and P. W. Schmidt, J. Appl. Cryst. 11 (1978) 405.

  30. 30.

    O. L. Brill and P. W. Schmidt, J. Appl. Phys. 39 (1968) 2274.

  31. 31.

    A. H. Heuer, J. Amer. Ceram. Soc. 62 (1979) 226.

  32. 32.

    W. R. Cannon and O. D. Sherby, ibid. 60 (1977) 44.

  33. 33.

    C. B. Carter, D. L. Kohlstedt and S. L. Sass, ibid. 63 (1980) 623.

  34. 34.

    H. J. Frost and M. F. Ashby, “Deformation-Mechanism Maps” (Pergamon Press, New York, 1982).

  35. 35.

    S. C. Hansen and D. S. Phillips, Phil. Mag. A 47 (1983) 209.

  36. 36.

    A. J. Perry, J. Mater. Sci. 9 (1974) 1016.

  37. 37.

    R. C. Gifkins, J. Amer. Ceram. Soc. 51 (1968) 69.

  38. 38.

    W. D. Kingery, “Introduction to Ceramics”, 2nd edn (John Wiley and Sons, New York, 1976) p. 183.

  39. 39.

    A. S. Argon, I. W. Chen and C. W. Lau, “Creepfatigue-Environment Interactions” edited by R. M. Pelloux and N. S. Stoloff (AIME, New York, 1980) p. 46.

  40. 40.

    R. Raj, Met. Trans 6A (1975) 1499.

  41. 41.

    J. R. Weertman, Can. Met. Q. 18 (1979) 73.

  42. 42.

    R. Raj, J. Amer. Ceram. Soc. 63 (1982) C-46.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Page, R.A., Lankford, J. & Spooner, S. Small-angle neutron scattering study of creep cavity nucleation and growth in sintered alumina. J Mater Sci 19, 3360–3374 (1984). https://doi.org/10.1007/BF00549828

Download citation

Keywords

  • Cavitation
  • Cavity Growth
  • Local Stress Concentration
  • Creep Cavity
  • Classical Nucleation Theory