Journal of Materials Science

, Volume 19, Issue 10, pp 3287–3300 | Cite as

Structural components in needle-cokes as studied by etching with chromic acid

Part 1
  • V. Markovic
  • S. Ragan
  • H. Marsh
Papers

Abstract

Structures within commercial calcined needle-cokes are characterized by optical microscopy to reveal optical texture and by scanning electron microscopy before and after etching with chromic acid solution at 400 to 423 K. The needle-cokes exhibit an optical texture of medium and coarse-grained mosaics, acicular flow domains and flow domains. The etching studies indicate that the acicular flow domains are made up of rolled and convoluted lamellae which etch to form laths (needle-like) ∼ 3 μm across. The mosaics appear when the rolled structures are viewed microscopically sectioned perpendicular to the lamellae. The acicular flow domains appear in longitudinal section. The etching of the flow domains shows that they have a sedimentary structure, 1 to 2 μm layer thickness, suggesting that mesophase coalesces within a layer but not between layers. A model is proposed to explain the origin and separation of structures in needle-cokes as created in the delayed coker.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. H. Stormont, Oil Gas J. 67 (1969) 75.Google Scholar
  2. 2.
    C. B. Scott, Chem. Ind. (1967) 1124.Google Scholar
  3. 3.
    H. W. Nelson, Ind. Eng. Chem. Prod. Res. Dev. 9 (1970) 176.Google Scholar
  4. 4.
    R. R. Jakob, Hydrocarbon Process. (1971) 132.Google Scholar
  5. 5.
    V. Hekler and H. E. Brooks, Pet. Refiner 38 (1959) 169.Google Scholar
  6. 6.
    F. L. Shea, US Patent 2,775,549 (1956).Google Scholar
  7. 7.
    R. C. Hackley, US Patent 2,922,755 (1960).Google Scholar
  8. 8.
    Great Lakes Corporation, US Patent 1,194,985 (1970).Google Scholar
  9. 9.
    M. Janik and M. Kaloc, Hutn. Listy (1980) 378.Google Scholar
  10. 10.
    E. Kurami, Sekiyu Gakkai Shi 16 (1973) 366.Google Scholar
  11. 11.
    W. L. Nelson, Oil Gas J. 76 (1978) 68.Google Scholar
  12. 12.
    K. E. Rose, Hydrocarbon Process. (1971) 85.Google Scholar
  13. 13.
    N. P. Lieberman, Oil Gas J. 78 (1980) 15, 71.Google Scholar
  14. 14.
    J. D. Brooks and G. H. Taylor, Carbon 3 (1965) 185.Google Scholar
  15. 15.
    Idem, in “Chemistry and Physics of Carbon” Vol. 4 edited by P. L. Walker Jr (Marcel Dekker, New York, 1968) p. 243.Google Scholar
  16. 16.
    H. Honda, H. Kimura, Y. Sanada, S. Sugawara and T. Furuta, Carbon 8 (1970) 181.Google Scholar
  17. 17.
    H. Marsh and P. L. Walker Jr, in “Chemistry and Physics of Carbon” Vol. 15 edited by P. L. Walker Jr and P. A. Thrower (Marcel Dekker, New York, 1979), p. 299.Google Scholar
  18. 18.
    R. Balduhn and E. Fitzer, Carbon 18 (1980) 155.Google Scholar
  19. 19.
    I. C. Lewis and L. S. Singer in “Chemistry and Physics of Carbon” Vol. 17 edited by P. L. Walker Jr and P. A. Thrower (Marcel Dekker, New York, 1981) p. 1.Google Scholar
  20. 20.
    H. Marsh and J. Smith in “Analytical Methods for Coal and Coal Products” Vol. 2 edited by Clarence Karr Jr (Academic Press, New York, 1978) p. 371.Google Scholar
  21. 21.
    J. L. White, G. Johnson and J. E. Zimmer, Extended Abstracts of 12th Biennial Conference on Carbon, Pittsburgh, 1975 (American Carbon Society, 1975) p. 492.Google Scholar
  22. 22.
    J. E. Zimmer and J. L. White, Mol Cryst. Liq. Cryst. 38 (1977) 177.Google Scholar
  23. 23.
    M. Buechler, C. B. Ng and J. L. White, Extended Abstracts of the 15th Biennial Conference on Carbon, Pennsylvania State University, 1979 (American Carbon Society, 1979) p. 433.Google Scholar
  24. 24.
    Idem, Extended Abstracts of 15th Biennial Conference on Carbon, Philadelphia, 1981 (American Carbon Society, 1981) p. 182.Google Scholar
  25. 25.
    J. E. Zimmer and J. L. White, Advan. Liq. Cryst. 5 (1982) 157.Google Scholar
  26. 26.
    J. L. White, Proceedings of International Symposium on Carbon, New Processing and New Applications, Toyohashi, 1982 (Kagaku Gijutsu-sha, 1982) p. 149.Google Scholar
  27. 27.
    J. E. Zimmer, ibid. p. 131.Google Scholar
  28. 28.
    E. Fitzer and C. Holley, Extended Abstracts of 16th Biennial Conference on Carbon, San Diego, 1983 (American Carbon Society, 1983) p. 104.Google Scholar
  29. 29.
    H. Tanaka and Y. Yamasaki, Reprints, Carbon '80, Baden-Baden, 1980 Deutsche Keramischen Gesellschaft, p. 397.Google Scholar
  30. 30.
    H. Murat, A. T. Miyazaki, H. Hiraoka, I. Koide and S. Hiraga Proceedings of International Symposium on Carbon, New Processing and New Applications, Toyohashi, 1982 (Kagaku Gijutshusha, 1982) p. 543.Google Scholar
  31. 31.
    W. Migitaka, Y. Tashiro and M. Iwasa, ibid. p. 553.Google Scholar
  32. 32.
    V. Markovich, H. Marsh and S. Ragan, Extended Abstracts of the 15th Biennial Conference on Carbon, Philadelphia, 1981 (American Carbon Society, 1981) p. 492.Google Scholar
  33. 33.
    H. Marsh, M. Forrest and L. A. Pacheco, Fuel 60 (1981) 423.Google Scholar
  34. 34.
    V. Markovic and H. Marsh, J. Microsc. 132 (1983) 345.Google Scholar
  35. 35.
    A. F. Balfour, H. E. Blayden, A. H. Carter and H. L. Riley, J. Soc. Chem. Ind. 57 (1938) 1.Google Scholar
  36. 36.
    H. Marsh, Fuel 50 (1971) 280.Google Scholar
  37. 37.
    M. Oberlin and J. Mering, Carbon 1 (1964) 471.Google Scholar
  38. 38.
    V. Markovic and H. Marsh, J. Mater. Sci. 19 (1984) 3301.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1984

Authors and Affiliations

  • V. Markovic
    • 1
  • S. Ragan
    • 2
  • H. Marsh
    • 2
  1. 1.Institute of Materials Science - 170Boris Kidric Institute, VincaBeogradYugoslavia
  2. 2.Northern Carbon Research Laboratories, School of Chemistry, Bedson BuildingUniversity of Newcastle upon TyneNewcastle upon TyneUK

Personalised recommendations