Journal of Materials Science

, Volume 19, Issue 10, pp 3121–3139 | Cite as

The role of alloying elements in the design of nickel-base superalloys

  • A. K. Jena
  • M. C. Chaturvedi
Review

Abstract

The constituents of nickel-base superalloys have been classified into solid solution formers, precipitate formers, carbide formers and surface stabilizers. The characteristics of solutes which would make them most suitable in each category have been specified and appropriate alloying elements have been identified. Nickel-base superalloys are hardened primarily by the precipitation of Ni3X type compounds. The occurrence and crystallography of precipitation of various kinds of Ni3X type precipitates have been considered. The role of substitution by alloying elements on mismatch and stability of phases has been discussed. The free electron model and the Engel-Brewer model have been applied for evaluating the stabilities of precipitates, and the role of the alloying elements in determining the stabilities of external and internal surfaces such as grain boundaries have been briefly outlined.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. J. Wahll, D. J. Maykuth and H. J. Hucek, in “Handbook of Superalloys” (Battelle Press, Columbus, 1979) p. 1.Google Scholar
  2. 2.
    R. W. Fawley, in “The Superalloys”, edited by C. T. Sims and W. C. Hagel (Wiley, New York, 1972) p. 3.Google Scholar
  3. 3.
    P. S. Kotval, Metallogr. 1 (1969) 251.Google Scholar
  4. 4.
    G. P. Sabol and R. Stickler, Phys. Status Solidi 35 (11) (1969) 11.Google Scholar
  5. 5.
    R. F. Decker and C. T. Sims, in “The Super-alloys”, edited by C. T. Sims and W. C. Hagel (Wiley, New York, 1979) p. 33.Google Scholar
  6. 6.
    R. T. Holt and W. Wallace, Int. Metals Rev. 21 (1976) 1.Google Scholar
  7. 7.
    Oleg D. Sherby and Peter M. Burke, Progr. Mater. Sci. 13 (7) (1967) 325.Google Scholar
  8. 8.
    W. Hume-Rothery and G. V. Raynor, “The Structure of Metals and Alloys”, 4th Edn. (Revised) (The Institute of Metals, London, 1967) p. 91.Google Scholar
  9. 9.
    M. Hansen and K. Anderko, “Constitution of Binary Alloys”, 2nd Edn. (McGraw Hill, New York, 1958); R. P. Elliott, first supplement (1965); F. A. Shunk, second supplement (1969).Google Scholar
  10. 10.
    R. M. N. Pelloux and N. J. Grant, Trans. Met. Soc. AIME 218 (1960) 232.Google Scholar
  11. 11.
    B. E. P. Beeston and L. K. France, J. Inst. Metals 96 (1969) 105.Google Scholar
  12. 12.
    P. C. J. Gallagher, Met. Trans. 1 (1970) 2429.Google Scholar
  13. 13.
    W. B. Pearson, “A Handbook of Lattice Spacing and Structures of Metals and Alloys” (Pergamon Press, Oxford, 1967).Google Scholar
  14. 14.
    A. K. Jena, D. Gulati and T. R. Ramachandran, Z. Metalkde 39 (1948) 111.Google Scholar
  15. 15.
    C. J. Smithells, “Metals Reference Book”, 5th Edn. (Butterworths, London, 1976) p. 860.Google Scholar
  16. 16.
    W. Koster and W. Rauscher, Z. Metalkde 39 (1948) 111.Google Scholar
  17. 17.
    L. W. Woodyatt, C. T. Sims and H. J. Beattie, Trans. AIME 236 (1966) 519.Google Scholar
  18. 18.
    M. Sakakibara and S. Sekino, in “Superalloy Processing” (Metals and Ceramics Information Centre, Battelle, Columbus, Ohio, 1972) p. I-1.Google Scholar
  19. 19.
    Y. S. Wang, X. M. Guan, H. Q. Ye, J. Bi and A. S. Xu, in “Superalloys 1980” (ASM, 1980) p. 63.Google Scholar
  20. 20.
    C. L. White, J. H. Schreibel and R. A. Padgett, Met. Tram. 14A (1983) 595.Google Scholar
  21. 21.
    C. L. White and R. A. Padgett, Scripta Metall. 16 (1982) 461.Google Scholar
  22. 22.
    P. M. Kelly, Int. Met. Rev. 18 (1973) 31.Google Scholar
  23. 23.
    P. Nash and D. R. F. West, Met. Sci. 17 (1983) 99.Google Scholar
  24. 24.
    O. H. Kriege and J. M. Baris, Trans. ASM 62 (1969) 195.Google Scholar
  25. 25.
    E. Hornbogen and M. Roth, Z. Metalkde 58 (1967) 842.Google Scholar
  26. 26.
    A. J. Ardell and R. B. Nicholson, J. Phys. Chem. Solids 27 (1966) 1793.Google Scholar
  27. 27.
    Idem, Acta Metall. 14 (1966) 1295.Google Scholar
  28. 28.
    W. E. Quist, R. Taggart and D. H. Polonis, Met. Trans. 2 (1971) 825.Google Scholar
  29. 29.
    K. Saito and R. Watanabe, Jap. J. Appl. Phys. 8 (1969) 14.Google Scholar
  30. 30.
    D. H. Ben Israel and M. E. Fine, Acta Metall. 11 (1963) 1051.Google Scholar
  31. 31.
    B. R. Clark and F. B. Pickering, J. Iron Steel Inst. 205 (1967) 70.Google Scholar
  32. 32.
    H. A. Moreen, R. Taggart and D. H. Polonis, Met. Trans. 5 (1974) 79.Google Scholar
  33. 33.
    Idem, Metallogr. 7 (1974) 513.Google Scholar
  34. 34.
    M. Raghavan, Met. Trans. 8A (1977) 1071.Google Scholar
  35. 35.
    D. W. Chung and M. C. Chaturvedi, Met. Sci. 8 (1974) 215.Google Scholar
  36. 36.
    M. C. Chaturvedi and D. W. Chung, Met. Trans. 10 (1979) 1579.Google Scholar
  37. 37.
    J. Manenc, Acta Metall. 7 (1959) 124.Google Scholar
  38. 38.
    I. Kirman and D. H. Warrington, J. Iron Steel Inst. 205 (1967) 1264; 99 (1971) 197.Google Scholar
  39. 39.
    W. C. Hagel and H. J. Beattie, in “Precipitation Processes in Steel” (The Iron and Steel Institute, London, 1959) p. 98.Google Scholar
  40. 40.
    M. Raghavan, Met. Trans. 9A (1978) 734.Google Scholar
  41. 41.
    Idem, ibid. 10A (1979) 1399.Google Scholar
  42. 42.
    M. Frebel, B. Predel and U. Klisa, Z. Metalkde 65 (1974) 311.Google Scholar
  43. 43.
    J. K. Tien and R. P. Gamble, Met. Trans. 3 (1972) 2157.Google Scholar
  44. 44.
    T. Miyazaki, K. Nakamura and H. Mori, J. Mater. Sci. 14 (1979) 1827.Google Scholar
  45. 45.
    D. D. Pearson, F. D. Lemkey and B. H. Kear, in “Superalloys 1980” (ASM, 1980) p. 513.Google Scholar
  46. 46.
    S. E. Axter and D. H. Polonis, Meter. Sci. Eng. 36 (1978) 71.Google Scholar
  47. 47.
    A. K. Jena and M. C. Chaturvedi, to be published.Google Scholar
  48. 48.
    J. H. Moll, G. N. Maniar and D. R. Muzyka, Met. Trans. 2 (1971) 2153.Google Scholar
  49. 49.
    C. P. Sullivan and M. J. Donachie, Met. Eng. Q. 11(4) (1971) 1.Google Scholar
  50. 50.
    C. Ravindran and M. C. Chaturvedi, Met. Trans. 6a (1975) 213.Google Scholar
  51. 51.
    J. R. Mihalisin and R. F. Decker, Trans. AIME 218 (1960) 507.Google Scholar
  52. 52.
    R. Cozar and A. Pineau, Met. Trans. 5 (1974) 2471.Google Scholar
  53. 53.
    D. Raynor and J. M. Silcock, Metal. Sci. J. 4 (1970) 121.Google Scholar
  54. 54.
    R. W. Guard and J. H. Westbrook, Trans. AIME 215 (1959) 807.Google Scholar
  55. 55.
    P. Nash and D. R. F. West, Met. Sci. 13 (1979) 670.Google Scholar
  56. 56.
    A. Taylor and R. W. Floyd, J. Inst. Metals 81 (1952–53) 25.Google Scholar
  57. 57.
    E. L. Raymond and D. A. Wells, in “Superalloy Processing” (Metals and Ceramics Information Center, Battelle, Columbus, Ohio 1972) p. N-1.Google Scholar
  58. 58.
    R. Nordheim and N. J. Grant, Trans. AIME 200 (1954) 211.Google Scholar
  59. 59.
    E. C. Guo and F. J. Ma, in “Superalloys 1980” (ASM, 1980) p. 431.Google Scholar
  60. 60.
    W. Hume-Rothery, Progr. Mater. Sci. 13(5) (1967) 229.Google Scholar
  61. 61.
    L. Brewer, UCRL Report 10701 (University of California, Berkeley, 1964); “High Strength Materials”, edited by V. F. Zackay (Wiley, New York, 1965) Ch. 2.Google Scholar
  62. 62.
    C. Wagner, Z. Electrochem. 65 (1961) 581.Google Scholar
  63. 63.
    Ya-Fang Han, P. Deb and M. C. Chaturvedi, Met. Sci. 16 (1982) 555.Google Scholar
  64. 64.
    W. I. Mitchell, Z. Metalkde 55 (1964) 613.Google Scholar
  65. 65.
    E. A. Fell, Metallurgia 63 (1961) 157.Google Scholar
  66. 66.
    D. W. Chung and M. C. Chaturvedi, Metallogr. 8 (1975) 329.Google Scholar
  67. 67.
    G. Chen, X. Xie, K. Ni, Z. Xu, D. Wang, M. Zhang and Y. Ju, in “Superalloys 1980” (ASM, 1980) p. 323.Google Scholar
  68. 68.
    G. Chen, C. Yao, Z. Zhong and W. Yu, in “Superalloys 1980” (ASM, 1980) p. 355.Google Scholar
  69. 69.
    C. T. Sims, in “The Superalloys”, edited by C. T. Sims and W. C. Hagel (Wiley, New York, 1972) p. 259.Google Scholar
  70. 70.
    L. R. Woodyatt, C. T. Sims and H. J. Beattie, Tram. AIME 236 (1966) 519.Google Scholar
  71. 71.
    J. R. Mihalisin, C. G. Bieber and R. T. Grant, Trans. AIME 242 (1968) 2399.Google Scholar
  72. 72.
    F. J. Rizzo and J. D. Buzzanell, J. Metals 21(10) (1969) 24.Google Scholar
  73. 73.
    C. T. Sims, ibid. 18 (1966) 1119.Google Scholar
  74. 74.
    C. Lund and J. F. Radavich, in “Superalloys 1980” (ASM, 1980) p. 85.Google Scholar
  75. 75.
    H. J. Beattie and W. C. Hagel, Trans. AIME 233 (1965) 277.Google Scholar
  76. 76.
    L. A. Jackman, H. B. Canada and F. E. Sczerzenie, in “Superalloys 1980” (ASM, 1980) p. 365.Google Scholar
  77. 77.
    Y. S. Wang, X. M. Guan, H. Q. Ye, J. Bi and A. S. Xu, ibid., p. 63.Google Scholar
  78. 78.
    H. E. Collins, Trans. ASM 62 (1969) 82.Google Scholar
  79. 79.
    G. E. Wasielewski and R. A. Rapp, in “The Superalloys”, edited by C. T. Sims and W. C. Hagel (Wiley, New York, 1972) p. 287.Google Scholar
  80. 80.
    D. P. Whittle and J. Stringer, Phil. Trans. Roy. Soc. Lond. A295 (1980) 309.Google Scholar
  81. 81.
    A. M. Beltran and D. A. Shores, in “The Superalloys”, edited by C. T. Sims and W. C. Hagel (Wiley, New York, 1972) p. 317.Google Scholar
  82. 82.
    R. Morbioli and H. Gilder, in “High Temperature Alloys for Gas Turbines”, edited by D. Coutsouradis, P. Felix, H. Fischmeister, L. Habraken, Y. Lindblom and M. O. Speidel (Applied Science, London, 1978) p. 125.Google Scholar
  83. 83.
    G. S. Giggins and F. S. Pettit, Trans. Met. Soc. AIME 245 (1969) 2495.Google Scholar
  84. 84.
    E. P. Whelan, in “Superalloys 1980” (ASM, 1980) p. 53.Google Scholar
  85. 85.
    A. U. Seybolt, G.E. Research Conference Report 70-C-189, June (1970).Google Scholar
  86. 86.
    A. U. Seybolt and A. M. Beltram, “Hot Corrosion Problems Associated with Gas Turbines”, STP421 (American Society for Testing and Materials, 1967).Google Scholar
  87. 87.
    G. R. Wallwork and A. Z. Hbd, Oxidat. Metals 3 (1971) 171.Google Scholar
  88. 88.
    D. P. Whittle, in “High Temperature Alloys for Gas Turbines”, edited by D. Coutsouradis, P. Felix, H. Fischmeister, L. Habraken, Y. Lindblom and M. O. Speidel (Applied Science, London, 1978) p. 109.Google Scholar
  89. 89.
    K. R. Peters, D. P. Whittle and J. Stringer, Corrosion Sci. 16 (1976) 791.Google Scholar
  90. 90.
    D. L. Douglass and J. S. Armijo, Oxidat. Metals 2 (1970) 207.Google Scholar
  91. 91.
    A. U. Seybolt, Corrosion Sci. 11 (1971) 751.Google Scholar
  92. 92.
    P. Elliot and T. K. Ross, Werkstoffe u. Korrosion 72 (1971) 531.Google Scholar
  93. 93.
    G. B. Thomas and T. B. Gibbons, in “Superalloys 1980” (ASM, 1980) p. 699.Google Scholar
  94. 94.
    D. R. Wood and R. M. Cook, Metallurgia 67 (1963) 109.Google Scholar
  95. 95.
    D. A. Vermilyea, C. S. Tedmon and D. E. Broecker, Corrosion 31 (1975) 222.Google Scholar
  96. 96.
    W. C. Johnson, J. E. Doherty, B. H. Kear and A. F. Giamei, Scripta Metall. 8 (1974) 971.Google Scholar
  97. 97.
    R. F. Decker and J. W. Freeman, Trans. AIME 218 (1961) 277.Google Scholar
  98. 98.
    J. M. Walsh and B. H. Kear, Met. Trans. 6 (1975) 226.Google Scholar
  99. 99.
    J. E. Doherty, A. F. Giamei and B. H. Kear, Canad. Met. Q. 13 (1974) 229.Google Scholar
  100. 100.
    R. S. Cremisio, Elec. Furn. Steel. Conf. Proc. 29 (1971) 19.Google Scholar
  101. 101.
    D. N. Duhl and C. P. Sullivan, J. Metals 23(7) (1971) 88.Google Scholar
  102. 102.
    T. V. Svistunova and G. V. Estulin, Stal 9 (1963) 725.Google Scholar
  103. 103.
    H. J. Goldschmidt, J. Iron Steel Inst. (Lond.) 160 (1948) 345; quoted in C. S. Barret, “Structure of Metals” (McGraw-Hill, New York, 1952) p. 247.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1984

Authors and Affiliations

  • A. K. Jena
    • 1
  • M. C. Chaturvedi
    • 2
  1. 1.Department of Metallurgical EngineeringIndian Institute of TechnologyKanpurIndia
  2. 2.Department of Mechanical EngineeringUniversity of ManitobaWinnipegCanada

Personalised recommendations