Advertisement

Journal of Materials Science

, Volume 1, Issue 1, pp 79–90 | Cite as

Quantitative size-factors for metallic solid solutions

  • H. W. King
Papers

Abstract

Quantitative size-factors, defined in terms of the effective atomic volume of the solute, have been calculated for 469 substitutional solid solutions using precision lattice parameter data available in the literature. Values of the volume size-factor, its linear derivative and a parameter expressing the deviation from Vegard's law, are tabulated in alphabetical order of the solvents. The application of these size-factors is discussed in relation to a number of physical, chemical and mechanical properties of solid solution alloys.

Keywords

Polymer Mechanical Property Solid Solution Parameter Data Atomic Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Blatt, Phys. Rev. 108 (1957) 285.Google Scholar
  2. 2.
    W. Desorbo, Phys. Rev. 130 (1963) 2177.Google Scholar
  3. 3.
    J. Friedel, Adv. in Physics 3 (1954) 446; Phil. Mag. 46 (1955) 514.Google Scholar
  4. 4.
    P. Haasen, “Physical Metallurgy”, editor R. W. Cahn (North Holland, Amsterdam, 1965), p. 821.Google Scholar
  5. 5.
    A. H. Cottrell, “Dislocations and Plastic Flow in Crystals” (Clarendon Press, 1953).Google Scholar
  6. 6.
    R. L. Fleischer, Acta Met. 9 (1961) 996; 11 (1963) 203.Google Scholar
  7. 7.
    H. Warlimont, “Physical Properties of Martensite and Bainite”, Iron and Steel Inst. Special Report 93 (1965) 58Google Scholar
  8. 8.
    L. S. Darken and R. W. Gurry, “Physical Chemistry of Metals” (McGraw-Hill, 1955).Google Scholar
  9. 9.
    H. W. King, AIME Symposium on Alloying Behaviour and Effects in Concentrated Solid Solutions (Gordon and Breach, New York—in the press).Google Scholar
  10. 10.
    W. Hume-Rothery, Acta Met. 14 (1966) 17.Google Scholar
  11. 11.
    T. B. Massalski and H. W. King, Progress in Materials Science 10 (1961) 1 (Pergamon Press, Oxford).Google Scholar
  12. 12.
    B. J. Pines, J. Phys. U.S.S.R. 3 (1940) 309.Google Scholar
  13. 13.
    G. Fournet, J. Phys. Radium 14 (1953) 374.Google Scholar
  14. 14.
    J. D. Eshelby, Solid State Physics 3 (1956) 79 (Academic Press, New York).Google Scholar
  15. 15.
    K. A. Gschneidner and G. H. Vineyard, J. Appl. Phys. 33 (1962) 3444.Google Scholar
  16. 16.
    N. F. Mott, Reports on Progress in Physics 25 (1962) 218 (Institute of Physics, London).Google Scholar
  17. 17.
    L. Vegard, Z. fur Physik 5 (1921) 17.Google Scholar
  18. 18.
    J. W. Heaton and A. C. Rose-Innes, J. Sci. Instr. 40 (1963) 369.Google Scholar
  19. 19.
    N. F. Mott and H. Jones, “The Theory of the Properties of Metals and Alloys” (Dover Publications, 1958).Google Scholar
  20. 20.
    B. T. Matthias, T. H. Geballe and V. B. Compton, Rev. in Modern Physics 35 (1963) 1 (American Physical Society).Google Scholar
  21. 21.
    L. T. Claiborne, J. Phys. Chem. Solids 26 (1965) 653.Google Scholar
  22. 22.
    J. D. Eshelby, J. Appl. Phys. 25 (1954) 255.Google Scholar
  23. 23.
    P. Haasen, Z. für Metallkunde 55 (1964) 55.Google Scholar

Copyright information

© Chapman and Hall 1966

Authors and Affiliations

  • H. W. King
    • 1
  1. 1.Metallurgy DepartmentImperial CollegeLondon, SW7UK

Personalised recommendations