Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Creep of CoO single crystals

  • 31 Accesses

  • 30 Citations

Abstract

Cobalt monoxide single crystals having a [100] orientation were creep tested in compression over ranges of temperature, stress and oxygen pressure. The creep curves were S-shaped and only the inflection creep rate, ε2, was analysed. In the range of 1000 to 1200° C, 850 to 1700 psi and 10−3 to 1 atm oxygen, ε2 was given by ε2=A po 2 0.45 σ 7.1exp(− Q c /RT) where Q c =87±6 kcal/mol at 0.01 atm O 2 and 100±16 kcal/mol at 1 atm O 2. Slip occurred on two orthogonal {011} 〈0¯11〉 slip systems. The presence of subboundaries was observed by optical and transmission electron microscopy. It is suggested that the creep rate is controlled by oxygen diffusion.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    M. R. Cantin, A. H. Clauer, M. S. Seltzer, and B. A. Wilcox, J. Amer. Ceram. Soc. 52 (1969) 112.

  2. 2.

    R. W. Christy, Acta Metallurgica 2 (1954) 284.

  3. 3.

    J. R. Patel and B. H. Alexander, ibid. 4 (1956) 385

  4. 4.

    D. Dew Hughes, IBM Journal, 45 (1961) 279.

  5. 5.

    B. Reppich, P. Haasen, and B. Illschner, Acta Metallurgica 12 (1964) 1283.

  6. 6.

    E. Peissker, P. Haasen, and H. Alexander, Phil. Mag. 7 (1961) 1279.

  7. 7.

    W. G. Johnston, J. Appl. Phys. 33 (1962) 2716.

  8. 8.

    W. A. Coghlan, Ph.D. dissertation, Stanford University, 1969.

  9. 9.

    B. Ilschner and B. Reppich, Phys. Stat. Sol. 3 (1963) 2093.

  10. 10.

    W. M. Armstrong, A. R. Causey, and W. R. Strurrock, J. Nucl. Mater. 19 (1966) 42.

  11. 11.

    J. B. Wachtman and L. H. Maxwell, J. Amer. Ceram. Soc. 40 (1957) 377.

  12. 12.

    B. Reppich, Phys. Stat. Sol. 20 (1967) 69.

  13. 13.

    J. Hewing, Diplomarbeit Göttingen, from P. Haasen, NPL Symp., The Relation Between Structure and Mechanical Properties of Metals (HMSO, London, 1963).

  14. 14.

    B. Fisher and D. S. Tannhauser, J. Electrochem. Soc. 111 (1964) 1194.

  15. 15.

    K. N. Strafford and H. Gartside, J. Mater. Sci. 4 (1969) 760.

  16. 16.

    B. Ilschner, B. Reppich, and E. Rieke, Discuss. Faraday Soc. 38 (1964) 243.

  17. 17.

    M. J. Buerger, Amer. Min. 15 (1930) 36.

  18. 18.

    W. A. Rachinger, Acta Metallurgica 4 (1956) 647.

  19. 19.

    J. P. Hirth and J. Lothe, “Theory of Dislocations” (McGraw-Hill Book Co., New York, 1968) 269.

  20. 20.

    A. H. Clauer, B. A. Wilcox, and J. P. Hirth, Acta Metallurgica 18 (1970) 381.

  21. 21.

    R. E. Carter and F. D. Richardson, Trans. AIME, 200 (1954) 1244.

  22. 22.

    W. K. Chen, N. L. Peterson, and W. T. Reeves, Phys. Rev., 186 (1969) 887.

  23. 23.

    B. A. Thompson, Ph.D. dissertation, Rensselaer Polytechnic Institute, 1962, (University Microfilms, Ann Arbor, Michigan, 1963).

  24. 24.

    J. B. Holt, Proc. Brit. Ceram. Soc. (1967) 157.

  25. 25.

    W. K. Chen and R. S. Jackson, J. Phys. Chem. Solids, 30 (1969) 1309.

  26. 26.

    P. Haasen, “Dislocation Dynamics”, Ed. A. R. Rosenfield, G. T. Hahn, A. L. Bement, and R. I. Jaffee (McGraw-Hill Book Co., New York, 1968) 701.

  27. 27.

    G. A. Webster, Phil. Mag. 14 (1966) 775.

  28. 28.

    J. J. Gilman, J. Appl. Phys. 36 (1965) 2772.

  29. 29.

    W. G. Johnston, ibid 33 (1962) 2716.

  30. 30.

    N. F. Mott, “Creep and Fracture of Metals at Elevated Temperatures” (HMSO, London, 1956) 21.

  31. 31.

    J. D. Eshelby, C. W. A. Newey, P. L. Pratt, and A. B. Lidiard, Phil. Mag. 3 (1958) 75.

  32. 32.

    F. A. Kröger and H. J. Vink, Sol. State Phys. 3 (1956) 307.

  33. 33.

    M. O'Keefe and W. J. Moore, J. Phys. Chem. 65 (1961) 1438.

  34. 34.

    W. J. Moore, Y. Ebisuzaki, and J. A. Sluss, ibid 62 (1958) 1438.

  35. 35.

    W. J. Moore, and E. L. Williams, Discuss. Faraday Soc. 28 (1959) 86.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Clauer, A.H., Seltzer, M.S. & Wilcox, B.A. Creep of CoO single crystals. J Mater Sci 6, 1379–1388 (1971). https://doi.org/10.1007/BF00549683

Download citation

Keywords

  • Oxygen
  • Polymer
  • Microscopy
  • Electron Microscopy
  • Transmission Electron Microscopy