Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The morphology of oxide reduction: Chromic oxide

  • 44 Accesses

  • 9 Citations

Abstract

The mechanism of the high shrinkage that occurs in chromic oxide in reducing conditions has been investigated by micrographic, analytical, electrical resistance, and other means. The effect of the reducing conditions is to modify the surface of the oxide particles, the core remaining normal oxide (i.e. oxygen excess). The modification is predominantly a change to a lower oxide or oxides and/or metal, although transitional formation of oxygen-deficient oxide is implied. In oxidising conditions (which cause fritting, but not shrinkage), modification to the extent that surfaces become of approximately stoichiometric proportions also occurs, but this change is apparently caused by loss of trioxide and results in unreactive oxide.

Types of electrical resistance test employed include (i) constant low-temperature, variable-oxygen, p/n tests on compacts and powders, and (ii) variable-temperature tests across a compact surface, across a fracture, and across chromium trioxide undergoing decomposition.

Additionally, chromium trioxide has been decomposed to chromic oxide over the range 400 to 1400° C, in argon and in oxygen. The apparent O/Cr ratio decreases on decomposition at 1400° C, particularly markedly in an oxygen atmosphere, and is accompanied by a drastic reduction in reactivity.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    H. E. N. Stone and N. A. Lockington, Powder Met. 7 (1964) 113.

  2. 2.

    Idem, ibid. 8 (1965) 81.

  3. 3.

    H. E. N. Stone, Ph.D. Thesis, London (1966).

  4. 4.

    L. Navias, J. Amer. Ceram. Soc. 44 (1961) 434.

  5. 5.

    W. J. Kramers and J. R. Smith, Trans. Brit. Ceram. Soc. 56 (1957) 590.

  6. 6.

    J. P. Roberts and C. Wheeler, Trans. Faraday Soc. 56 (1960) 570.

  7. 7.

    J. P. Roberts and J. Hutchings, ibid 55 (1959) 1394.

  8. 8.

    H. J. Alsopp and J. P. Roberts, ibid 1386.

  9. 9.

    F. Adcock, J. Iron Steel Inst. 115 (1927) 369.

  10. 10.

    A. H. Sully, E. A. Brandes, and A. G. Provan, J. Inst. Metals 81 (1952) 569.

  11. 11.

    D. J. M. Bevan, J. P. Shelton, and J. S. Anderson, J. Chem. Soc. (1948) 1729.

  12. 12.

    W. C. Hagel and A. U. Seybolt, J. Electrochem. Soc. 108 (1961) 1146.

  13. 13.

    W. A. Fischer and G. Lorenz, Archiv. Eisenhut. 28 (1957) 497.

  14. 14.

    Idem, Z. physik. Chem. 18 (1958) 308.

  15. 15.

    E. R. S. Winter, J. Chem. Soc. (1955) 3824.

  16. 16.

    S. E. Voltz and S. W. Weller, J. Amer. Ceram. Soc. 75 (1953) 5227.

  17. 17.

    R. J. Davis, Trans. Brit. Ceram. Soc. 56 (1957) 586

  18. 18.

    D. R. Chapman, R. H. Griffith, and J. D. F. Marsh, Proc. Roy. Soc. 224A (1954) 419.

  19. 19.

    T. J. Gray, “Chemistry of the Solid State”, edited by Garner (Butterworths, London, 1955).

  20. 29.

    K. Hauffe and J. Block, Z. physik. Chem. 198 (1951) 232.

  21. 21.

    J. A. Champion, Brit. J. Appl. Physics 15 (1964) 633.

  22. 22.

    C. Wagner, Z. physik. Chem. 22 (1933) 181.

  23. 23.

    O. Kubaschewski and B. E. Hopkins, “Oxidation of Metals and Alloys” (Butterworths, London, 1962), p. 8 et seq.

  24. 24.

    B. Kubota, N. Nishikawa, A. Yanase, E. Hirota, T. Mihara, and Y. Iida, J. Amer. Ceram. Soc. 46 (1963) 550.

  25. 25.

    P. Arthur and J. N. Ingraham, US Patent 3,117,093 (1964).

  26. 26.

    B. Kubota, J. Amer. Ceram. Soc. 44 (1961) 239.

  27. 27.

    D. Caplan and M. Cohen, J. Electrochem. Soc. 108 (1961) 438.

  28. 28.

    Idem, Trans. AIME 194 (1952) 1057.

  29. 29.

    N. Schönberg, Acta Chem. Scand. 8 (1954) 221.

  30. 30.

    M. Udy, “Chromium” (Reinhold, New York, 1956).

  31. 31.

    M. M. Chen and J. Chipman, Trans. ASM 38 (1947) 70.

  32. 32.

    D. C. Hilty, W. D. Forgeng, and R. L. Folkmann, Trans. AIME 203 (1955) 253.

  33. 33.

    R. E. Hook and A. M. Adair, Trans. AIME Met. Soc. 230 (1964) 1278.

  34. 34.

    Y. A. Danilovitch and A. H. Morosov, FizKhim Osnovy Proizv. Stali, Moscow (1964) 223.

  35. 35.

    R. V. Pathy and R. G. Ward, J. Iron Steel Inst. 202 (1964) 995.

  36. 36.

    A. U. Seybolt, J. Electrochem. Soc. 107 (1960) 147.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stone, H.E.N., Lockington, N.A. The morphology of oxide reduction: Chromic oxide. J Mater Sci 2, 112–117 (1967). https://doi.org/10.1007/BF00549569

Download citation

Keywords

  • Oxide
  • Shrinkage
  • Oxide Particle
  • Oxygen Atmosphere
  • Drastic Reduction