Archives of Microbiology

, Volume 111, Issue 3, pp 239–244

Synthesis, storage and degradation of polyglucose in chlorobium thiosulfatophilum

  • Reidun Sirevåg
  • John G. Ormerod


Cultures of Chlorobium thiosulfatophilum form polyglucose during growth. The polyglucose is laid down within the cells as rosette-like granules, which are made up from smaller grains. The size of each granule appears to be limited to less than 30 nm, since an increase in polyglucose content leads to more granules being formed rather than an increase in granule size.

The polyglucose in washed cells is fermented in the dark to acetate, propionate, caproate and succinate, of which acetate by far comprises the largest fraction (68%). During incubation of washed cells without hydrogen donor, the level of polyglucose decreases regardless of whether the cells are incubated in the dark or in the light. Since the products formed from polyglucose under the two different conditions are not the same, it is suggested that polyglucose in the dark serves as an energy source, whereas when in the light the role of polyglucose is mainly to provide the cell with reducing power.

Key words

Chlorobium Polyglucose Dark metabolism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atkinson, D. E.: Citrate and the citrate cycle in the regulation of energy metabolism. In: The metabolic roles of citrate (T. W. Goodwin, ed.), pp. 23–40. London-New York: Academic Press 1968Google Scholar
  2. Buchanan, B. B., Sirevåg, R.: Ribulose-1,5-diphosphate carboxylase and Chlorobium thiosulfatophilum. Arch. Microbiol. 109, 15–19 (1976)Google Scholar
  3. Dawes, E. A., Senior, P. J.: The role and regulation of energy reserve polymers in micro-organisms. Advanc. Microb. Physiol. 10, 136–266 (1973)Google Scholar
  4. Jungermann, K., Schön, G.: Pyruvate-formate lyase in Rhodospirillum rubrum Ha adapted to anaerobic dark conditions. Arch. Microbiol. 99, 109–116 (1974)Google Scholar
  5. Larsen, H.: On the microbiology and biochemistry of the photosynthetic green sulfur bacteria. K. Norske vidensk. Selsk. Skr. 1 (1953)Google Scholar
  6. Lowry, O. H., Rosebrough, M. S., Farr, A. L., Randall, R. J.: Protein measurements with the Folin phenol reagent. J. biol. Chem. 193, 265–275 (1951)Google Scholar
  7. Ormerod, J. G., Ormerod, K. S., Gest, H.: Light-dependent utilization of organic compounds and photoproduction of molecular hydrogen by photosynthetic bacteria; relationships with nitrogen metabolism. Arch. Biochem. Biophys. 94, 449–463 (1961)Google Scholar
  8. Pfennig, N.: Eine vollsynthetische Nährlösung zur selektiven Anreicherung einiger Schwefelpurpurbakterien. Naturwissenschaften 48, 136 (1961)Google Scholar
  9. Pfennig, N.: Beobachtungen über das Schwärmen von Chromatium okenii. Arch. Mikrobiol. 42, 90–95 (1962)Google Scholar
  10. Pippka, R., Stanier, R. Y.: Photoheterotrophy and chemoheterotrophy. In: Abstracts of symposium on procaryotic photosynthetic organisms (G. Drews, ed.) Dissertationsdruck. Freiburg i. Br.: Johannes Krause, Buchbinderei 1973Google Scholar
  11. Sirevåg, R., Ormerod, J. G.: Carbon dioxide fixation in photosynthetic green sulphur bacteria. Science 169, 186–187 (1970a)Google Scholar
  12. Sirevåg, R., Ormerod, J. G.: Carbon dioxide fixation in green sulphur bacteria. Biochem. J. 120, 399–408 (1970b)Google Scholar
  13. Sirevåg, R.: Further studies on carbon dioxide fixation in Chlorobium. Arch. Microbiol. 98, 3–18 (1974)Google Scholar
  14. Sirevåg, R.: Photoassimilation of acetate and metabolism of carbohydrate in Chlorobium thiosulfatophilum. Arch. Microbiol. 104, 105–111 (1975)Google Scholar
  15. Stanier, R. Y., Smith, J. H. C.: The chlorophylls of green bacteria. Biochim. biophys. Acta (Amst.) 41, 478–484 (1960)Google Scholar
  16. Thauer, R. K., Rupprecht, E., Jungermann, K.: Separation of 14C-formate from CO2-fixation metabolites by isoionic-exchange chromatography. Analyt. Biochem. 38, 461–468 (1970)Google Scholar
  17. Thiéry, J. P.: Mise en évidence des polysaccharides sur coupes fines en microscopie electronique. J. Microscopie 6, 987–1018 (1967)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Reidun Sirevåg
    • 1
  • John G. Ormerod
    • 1
  1. 1.Botanical LaboratoryUniversity of OsloOslo 3Norway

Personalised recommendations