Advertisement

Journal of Materials Science

, Volume 14, Issue 6, pp 1433–1439 | Cite as

The effect of heating on the domain structure of beta-eucryptite, LiAlSiO4

  • W. F. Müller
Papers

Abstract

Transmission electron microscopy of β-eucryptite revealed the occurrence of antiphase domains with the antiphase vector 1/2 a. This vector relates (Si, Al)O4-tetrahedra which are chemically equivalent, i.e. either SiO4 or AlO4 (in an ordered structure); therefore, it leaves the Si/Al long-range order undisturbed. The size of the domains depends on the temperature history of the crystals. Antiphase domains with the antiphase vector 1/2 c have not been observed. In situ heating experiments showed that the superstructure reflections of the type h+k=2n+1, l=2n+1 (“a-reflections”) rapidly lose their intensity and become unobservable at temperatures around 550° C (furnace, not specimen temperature) as also known from X-ray studies of β-eucryptite at 460° C (specimen temperature). This change is reversible. Correspondingly, the antiphase domain boundaries which are imaged with the a-reflections disappear at these temperatures. Upon cooling, the antiphase domain boundaries reappear at the same positions as before. It is concluded that position, shape and size of the antiphase domains is controlled by the number and distribution of local defects in the Si/Al order.

Keywords

Polymer Microscopy Reflection Electron Microscopy Furnace 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. G. F. Winkler, Acta Cryst. 1 (1948) 27.Google Scholar
  2. 2.
    M. J. Buerger, Amer. Mineral. 33 (1948) 751.Google Scholar
  3. 3.
    Idem, ibid 39 (1954) 600.Google Scholar
  4. 4.
    M. Behruzi and Th. Hahn, Naturwiss. 54 (1967) 643.Google Scholar
  5. 5.
    Idem, Z. Kristallogr. 133 (1971) 405.Google Scholar
  6. 6.
    Idem, Fortschr. Mineral. 55 Beiheft 1 (1977) 12.Google Scholar
  7. 7.
    V. Tscherry and F. Laves, Naturwiss. 57 (1970) 194.Google Scholar
  8. 8.
    V. Tscherry and H. Schulz, ibid 57 (1970) 194.Google Scholar
  9. 9.
    H. Schulz and V. Tscherry, Acta Cryst. B 28 (1972) 2168.Google Scholar
  10. 10.
    Idem, ibid 28 (1972) 2174.Google Scholar
  11. 11.
    V. Tscherry, H. Schulz and F. Laves, Z. Kristallogr. 135 (1972) 161.Google Scholar
  12. 12.
    Idem, ibid 135 (1972) 175.Google Scholar
  13. 13.
    W. W. Pillars and D. R. Peacor, Amer. Mineral. 58 (1973) 681.Google Scholar
  14. 14.
    H. Schulz, J. Amer. Ceram. Soc. 57 (1974) 313.Google Scholar
  15. 15.
    U. v. Alpen, H. Schulz, G. H. Talat and K. H. Thiemann, Z. Kristallogr. 146 (1977) 89.Google Scholar
  16. 16.
    H. Guth and G. Heger, ibid 146 (1977) 143.Google Scholar
  17. 17.
    F. A. Hummel, J. Amer. Ceram Soc. 34 (1951) 235.Google Scholar
  18. 18.
    F. H. Gillery and E. A. Bush, ibid 42 (1959) 175.Google Scholar
  19. 19.
    J. Petzoldt, Glastech. Ber. 40 (1967) 385.Google Scholar
  20. 20.
    H. Böhm, Phys. Stat. Sol. (a) 30 (1975) 531.Google Scholar
  21. 21.
    R. T. Johnson Jun., B. Borosin, M. L. Knotek and R. M. Biefeld, Phys. Letters 54A (1975) 403.Google Scholar
  22. 22.
    U. v. Alpen, E. Schönherr, H. Schulz and G. H. Talat, Electrochim. Acta 22 (1977) 805.Google Scholar
  23. 23.
    W. F. Müller and H. Schulz, Naturwiss. 63 (1976) 294.Google Scholar
  24. 24.
    H. Bach, Bosch Techn. Berichte 1 (1964) 10.Google Scholar
  25. 25.
    D. J. Barber, J. Mater. Sci. 5 (1970) 1.Google Scholar
  26. 26.
    N. J. Tighe, “Electron Microscopy in Mineralogy”, edited by H. R. Wenk (Springer-Verlag, Berlin, Heidelberg, New York, 1976) p. 144.Google Scholar
  27. 27.
    W. F. Müller and H. -R. Wenk, N. Jb. Miner. Mh. (1973) 17.Google Scholar
  28. 28.
    P. B. Hirsch, A. Howie, R. B. Nicholson, D. W. Pashley and M. J. Whelan, “Electron Microscopy of Thin Crystals” (Butterworths, London, 1965).Google Scholar
  29. 29.
    S. Amelinckx, R. Gevers, G. Remaut and J. Van Landuyt (Eds.) “Modern Diffraction and Imaging Techniques in Materials Science” (North Holland Press, Amsterdam, 1970).Google Scholar
  30. 30.
    H. R. Wenk (coordinating Ed.), “Electron Microscopy in Mineralogy” (Springer-Verlag, Berlin, Heidelberg, New York, 1976).Google Scholar
  31. 31.
    W. Loewenstein, Amer. Mineral. 39 (1954) 92.Google Scholar
  32. 32.
    J. R. Goldsmith and F. Laves, Z. Kristallogr. 106 (1955) 213.Google Scholar
  33. 33.
    S. Amelinckx and J. Van Landuyt, “Electron Microscopy in Mineralogy” edited by H.-R. Wenk (Springer-Verlag, Berlin, Heidelberg, New York, 1976) p. 68.Google Scholar
  34. 34.
    H. Bärnighausen, Acta Cryst. A 31 Suppl. (1975) p. S 3.Google Scholar
  35. 35.
    Idem, private communication (1975).Google Scholar
  36. 36.
    G. Van Tendeloo and S. Amelinckx, Acta Cryst. A 31 (1975) 431.Google Scholar
  37. 37.
    J. Wondratschek and W. Jeitschko, ibid A32 (1976) 664.Google Scholar
  38. 38.
    J. V. Smith, “Feldspar Minerals”, Vol. 1 (Springer-Verlag, Berlin, Heidelberg, New York, 1974).Google Scholar
  39. 39.
    H. Jagodzinski and M. Korekawa, Z. Kristallogr. 143 (1976) 239.Google Scholar
  40. 40.
    F. Frey, H. Jagodzinski, W. Prandl and W. B. Yelon, Phys. Chem. Minerals 1 (1977) 227.Google Scholar
  41. 41.
    F. Laves and J. R. Goldsmith, Acta Cryst. 7 (1954) 465.Google Scholar
  42. 42.
    A. H. Heuer and G. L. Nord Jr, “Electron Microscopy in Mineralogy”, edited by H. -R. Wenk (Springer-Verlag, Berlin, Heidelberg, New York, 1976) p. 274.Google Scholar
  43. 43.
    H. Kroll and W. F. Müller, Fortschr. Mineral. 55 Beiheft 1 (1977) 77.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1979

Authors and Affiliations

  • W. F. Müller
    • 1
  1. 1.Fachbereich 11, MineralogieTechnische Hochschule DarmstadtDarmstadtGermany

Personalised recommendations