Journal of Materials Science

, Volume 26, Issue 8, pp 2157–2168 | Cite as

Fracture mechanics model for subthreshold indentation flaws

Part I Equilibrium fracture
  • Srinivasarao Lathabai
  • J. Rödel
  • T. Dabbs
  • B. R. Lawn
Papers

Abstract

A fracture mechanics model for subthreshold indentation flaws is. described. The model describes the initiation and extension of a microcrack from a discrete deformation-induced shear “fault” (shear crack) within the contact zone. A stress-intensity factor analysis for the microcrack extension in residual-contact and applied-stress fields is used in conjunction with appropriate fracture conditions, equilibrium in Part I and non-equilibrium in Part II, to determine critical instability configurations.

In Part I, the K-field relations are used in conjunction with the Griffith requirements for crack equilibrium in essentially inert environments to determine: (i) the critical indentation size (or load) for spontaneous radial crack pop-in from a critical shear fault under the action of residual stresses alone; (ii) the inert strengths of surfaces with subthreshold or postthreshold flaws. The theory is fitted to literature data for silicate glasses. These fits are used to “calibrate” dimensionless parameters in the fracture mechanics expressions, for later use in Part II. The universality of the analysis in its facility to predict the main features of crack initiation and propagation in residual and applied fields will be demonstrated. Special emphasis is placed on the capacity to account for the significant increase in strength (and associated scatter) observed on passing from the postthreshold to the subthreshold domain.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Olshansky and R. D. Maurer, J. Appl. Phys. 47 (1976) 4497.Google Scholar
  2. 2.
    D. Kalish and B. K. Tariyal, J. Amer Ceram. Soc. 61 (1978) 518.Google Scholar
  3. 3.
    T. P. Dabbs, D. B. Marshall and B. R. Lawn, ibid. 63 (1980) 224.Google Scholar
  4. 4.
    T. P. Dabbs and B. R. Lawn, Phys. Chem. Glasses 23 (1982) 93.Google Scholar
  5. 5.
    B. R. Lawn, T. P. Dabbs and C. J. Fairbanks, J. Mater. Sci. 18 (1983) 2785.Google Scholar
  6. 6.
    T. P. Dabbs, C. J. Fairbanks and B. R. Lawn, ASTM STP 844, (American Society for Testing and Material Philadelphia, 1984) p. 142.Google Scholar
  7. 7.
    H. Multhopp, B. R. Lawn and T. P. Dabbs, “Deformation of Ceramic Materials II”, edited by R. E. Tressler and R. C. Bradt (Plenum, New York, 1984) p. 681.Google Scholar
  8. 8.
    T. P. Dabbs and B. R. Lawn, J. Amer. Ceram. Soc. 68 (1985) 563.Google Scholar
  9. 9.
    B. R. Lawn, D. B. Marshall and T. P. Dabbs, Strength of Glass, edited by C. R. Kurkjian (Plenum, New York, 1985) p. 249.Google Scholar
  10. 10.
    J. T. Hagan, J. Mater. Sci. 14 (1979) 2975.Google Scholar
  11. 11.
    Idem., ibid. 15 (1980) 1417.Google Scholar
  12. 12.
    H. M. Chan and B. R. Lawn, J. Amer. Ceram. Soc. 71 (1988) 29.Google Scholar
  13. 13.
    B. R. Lawn and A. G. Evans, J. Mater. Sci. 12 (1977) 2195.Google Scholar
  14. 14.
    K. E. Puttick, J. Phys. D 11 (1978) 595.Google Scholar
  15. 15.
    B. R. Lawn and D. B. Marshall, J. Amer. Ceram. Soc. 62 (1979) 347.Google Scholar
  16. 16.
    S. S. Chiang, D. B. Marshall and A. G. Evans, J. Appl. Phys. 53 (1982) 312.Google Scholar
  17. 17.
    K. Jakus, J. E. Ritter, S. R. Choi, T. Lardner and B. R. Lawn, J. Non-Cryst. Solids 102 (1988) 82.Google Scholar
  18. 18.
    R. Hill, “The Mathematical Theory of Plasticity” (Oxford University Press, London, 1950) Ch. 5, eqn (8).Google Scholar
  19. 19.
    D. B. Marshall and B. R. Lawn, J. Mater. Sci. 14 (1979) 2001.Google Scholar
  20. 20.
    B. R. Lawn, A. G. Evans and D. B. Marshall, J. Amer. Ceram. Soc. 63 (1980) 574.Google Scholar
  21. 21.
    D. B. Marshall, B. R. Lawn and P. Chantikul, J. Mater. Sci. 14 (1979) 2225.Google Scholar
  22. 22.
    T. P. Dabbs, B. R. Lawn and P. L. Kelly, Phys. Chem. Glasses 23 (1982) 58.Google Scholar
  23. 23.
    A. Arora, D. B. Marshall, B. R. Lawn and M. V. Swain, J. Non-Cryst. Solids 31 (1979) 415.Google Scholar
  24. 24.
    J. Lankford, J. Mater. Sci. 16 (1981) 1177.Google Scholar
  25. 25.
    B. R. Lawn and M. V. Swain, J. Mater. Sci. 10 (1975) 113.Google Scholar
  26. 26.
    D. B. Marshall, B. R. Lawn and A. G. Evans, J. Amer. Ceram. Soc. 65 561 (1982).Google Scholar
  27. 27.
    T. P. Dabbs and B. R. Lawn, ibid. 65 (1982) C-37.Google Scholar
  28. 28.
    B. R. Lawn, T. Jensen and A. Arora, J. Mater. Sci. 11 (1976) 573.Google Scholar
  29. 29.
    B. R. Lawn and T. R. Wilshaw, ibid. 10 (1975) 1049.Google Scholar
  30. 30.
    D. B. Marshall and B. R. Lawn, J. Amer. Ceram. Soc. 63 (1980) 532.Google Scholar
  31. 31.
    P. Chantikul, B. R. Lawn and D. B. Marshall, ibid. 64 (1981) 322.Google Scholar
  32. 32.
    B. R. Lawn, D. B. Marshall, G. R. Anstis and T. P. Dabbs, J. Mater. Sci. 16 (1981) 2846.Google Scholar
  33. 33.
    G. I. Barenblatt, Adv. Appl. Mech. 7 (1962) 55.Google Scholar
  34. 34.
    Y-W. Mai and B. R. Lawn, Ann. Rev. Mater. Sci. 16 (1986) 415.Google Scholar
  35. 35.
    G.C. Sih, “Handbook of Stress Intensity Factors” (Lehigh University Press, Bethlehem, Pa., 1973).Google Scholar
  36. 36.
    B. R. Lawn and T. R. Wilshaw, “Fracture of Brittle Solids” (Cambridge University Press, London, 1975).Google Scholar
  37. 37.
    T. J. Chuang, personal communication.Google Scholar
  38. 38.
    C. J. Fairbanks, unpublished work.Google Scholar
  39. 39.
    T. P. Dabbs, PhD Thesis, University of New South Wales, Australia (1984).Google Scholar

Copyright information

© Chapman and Hall Ltd. 1991

Authors and Affiliations

  • Srinivasarao Lathabai
    • 1
  • J. Rödel
    • 1
  • T. Dabbs
    • 1
  • B. R. Lawn
    • 1
  1. 1.Ceramics DivisionNational Institute of Standards and TechnologyGaithersburgUSA
  2. 2.Department of Materials Science and EngineeringLehigh UniversityBethlehemUSA
  3. 3.Division of Wool TechnologyCSIROSydneyAustralia

Personalised recommendations